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Figure 1: Our segmentation example. We cut out the head region from the CT volume of a stuffed bear. From specified con-
tours (a), we computed a scalar field (b) and generated a boundary from the field (c). We smoothed the right half of the vol-
ume and computed the boundaries (d) using a previous method (left) and our B-HRBF (right) with the same contours. 

 

Abstract 

In this paper, we propose a novel contour-based volume image segmentation technique. Our technique is based on 
an implicit surface reconstruction strategy, whereby a signed scalar field is generated from user-specified contours. 
The key idea is to compute the scalar field in a joint spatial-range domain (i.e., bilateral domain) and resample its 
values on an image manifold. We introduce a new formulation of Hermite radial basis function (HRBF) interpola-
tion to obtain the scalar field in the bilateral domain. In contrast to previous implicit methods, bilateral HRBF (B-
HRBF) generates a segmentation boundary that passes through all contours, fits high-contrast image edges if they 
exist, and has a smooth shape in blurred areas of images. We also propose an acceleration scheme for computing 
B-HRBF to support a real-time and intuitive segmentation interface. In our experiments, we achieved high-quality 
segmentation results for regions of interest with high-contrast edges and blurred boundaries. 

Categories and Subject Descriptors (according to ACM CCS): I.4.6 [Computer Graphics]: Segmentation, I.3.6 
[Computer Graphics]: Interaction techniques, I.3.5 [Computer Graphics]: Computational Geometry and Object 
Modeling, Curve, surface, solid, and object representations.  

 

1. Introduction 

To obtain important information from volume images and 
construct mesh models for simulations, it is crucial to seg-
ment the volume. Due to the wide variety of imaging mo-
dalities and segmentation targets, fully automatic segmen-
tation is very difficult and user interaction is still required. 

Many semi-automatic segmentation methods have been 
published in recent decades. They can be roughly divided 
into seed-based and contour-based methods, in terms of the 
user-interface characteristics. Seed-based methods [AB94; 
BVZ01] allow users to extract a region of interest (ROI) by 

roughly specifying a small number of seeds. Such methods 
work very well for ROIs with clear image boundaries; 
however, they often generate errors around blurred or com-
plex image areas, because the seeds provide only rough 
inside/outside information. A contour-based approach is a 
promising way to accurately excise ROIs with ambiguous 
boundaries [TO02; LBD*08; IY10]. Although contouring 
requires more manipulation than seeding, users can directly 
specify contours on ambiguous areas of images, and the 
system is able to optimize segmentation boundaries with 
much richer constraints. Many ROIs in biomedical images 
have ambiguous boundaries that only experts can detect. 
Segmenting such ROIs requires contour-based approaches. 

a b

[TO02; HKHP11] Our B-HRBF
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Our goal is to develop a contour-based volume segmen-
tation technique specialized for extracting ROIs with am-
biguous image boundaries. Three requirements must be met 
to generate segmentation boundaries from contours: the 
boundary should i) pass through all contours; ii) fit high-
contrast image edges, if they exist near the boundary; and 
iii) be smooth around blurred areas of images. Existing 
contour-based segmentation methods [TO02; LBD*08; 
IY10] focus only on the smoothness of the boundary (see 
Fig. 1d, left), and cannot fit the boundary to image edges. 

This paper proposes a novel contour-based segmentation 
technique based on an implicit surface-reconstruction strat-
egy. The key idea is to construct a scalar field from con-
tours in a joint spatial-range domain (i.e., bilateral do-
main) and resample its values on an image manifold 
[SKM98]. While conventional implicit methods define 
segmentation boundaries as zero-level sets, our segmenta-
tion boundary is defined by the intersection between the 
image manifold and a zero-level set of the scalar field. 
Because the scalar field is generated by a Hermite-type 
interpolation with a radial basis function (RBF) on the 
image manifold, we refer to our new implicit function as 
the bilateral Hermite radial basis function (B-HRBF). 
Without explicitly calculating the intersection, our B-
HRBF successfully generates the segmentation boundary 
that satisfies the three requirements summarized above. We 
also developed a new acceleration scheme for computing 
the B-HRBF.  

To verify the feasibility of our technique, several real-
world volumes were examined. Figure 1 illustrates our 
segmentation results for a computed tomography (CT) 
image of a stuffed animal with ambiguous boundaries. The 
resulting boundary fits to high-contrast edges well, and is 
smooth around blurred areas (Fig. 1d, right).  

The contributions and benefits of this paper are below; 

 A novel B-HRBF formulation for segmenting ROIs with 
high-contrast edges and ambiguous boundaries.  

 A contour-based user interface for intuitive volume 
segmentation.  

 An acceleration scheme for B-HRBF computation for 
supporting real-time segmentation.  

2. Related Work 

Our technique is related to previous methods such as sur-
face reconstruction and image segmentation. 

Surface reconstruction. Methods for reconstructing a 
surface from scattered data points (i.e., positions with 
normals) have been widely applied in various fields. There 
are two main surface-reconstruction methods: direct mesh-
ing and implicit approaches. 

Direct meshing reconstructs a surface by directly con-
necting the input data points. Edelsbrunner and Nucke 
[EM94] defined the alpha shape as a generalized convex 
hull for scattered points, and presented an algorithm to 
reconstruct it based on Delaunay triangulation. Bernardini 
et al. [BMR*99] presented the ball-pivoting algorithm, 

which incrementally constructs triangles by rolling a ball 
on the scattered points. Amenta et al. [ABK98] applied 
Delaunay triangulation to input points, and subsequently 
trimmed unnecessary simplices. However, direct meshing 
assumes sufficiently dense point distributions. Hence, it is 
difficult to apply when data points exist only on contours 
and are non-uniformly distributed. 

In implicit approaches, a signed scalar field, ݂ሺ·ሻ, with a 
zero value at all scattered points p (i.e., ݂ሺܘሻ ൌ 0) and 
positive/negative values inside/outside, is first computed; 
then its zero-level set is extracted. RBF interpolation is 
commonly used for computing the scalar field, because it 
can generate a smooth field from non-uniformly distributed 
data points [Duc77; CBC*01; TO02; KHR02; OBS04; 
BK05; Wen05]. However, it requires the definition of 
hand-tuned offset points (Fig. 2b). For instance, in a previ-
ous study [CBC*01], the authors generated two additional 
offset points at p ± εn with associated values ±ε, for each 
point p with a unit normal n. In general, a single optimal 
choice for ε does not exist. To address this issue, some 
researchers have presented Hermite radial basis functions 
(HRBFs) that directly incorporate normals and gradients as 
ሻܘሺ݂ ൌ  .[WSC06; BMS*10; MGV10] (Fig. 2c) ܖ

 
Figure 2: Directional constraints of RBF and HRBF. 

Image Segmentation. Image segmentation is an active 
field of research, and many different segmentation ap-
proaches have been presented, such as thresholding, region 
growing, k-means clustering, mean-shift, active contours, 
graph cut, and so on [AB94; PXP98; Wir07]. We review 
methods that are closely related to our work. Active con-
tour image segmentation was originally presented by Kass 
et al. [KWT88], and many extensions have been developed 
[HPE*08]. This method iteratively updates an evolving 
boundary (i.e., a curve in a two-dimensional (2D) domain 
and a surface in a three-dimensional (3D) domain) so as to 
minimize two types of energy: internal energy sensitive to 
the boundary shape and external energy sensitive to local 
image features around the boundary. Its level set formula-
tions with RBFs [GBFP07; XM11] are able to handle topo-
logical changes of the evolving boundary. Although these 
methods can balance smoothing and image-edge-fitting 
effects, they are difficult to adapt to interactive 
segmentation with expert knowledge. Boykov et al. 
[BVZ01] and Li et al. [LSTS04] used a graph cut algorithm 
for image segmentation. This method formulates image 
segmentation as an energy minimization problem, and 
solves it by constructing an undirected weighted graph over 
the image pixels and computing its minimum cut. Boykov 
and Kolmogorov [BK03] extended this method to find 
minimal surfaces. However, it is difficult to apply this 
method in our context, because it does not control the 
boundary smoothness. 

a  Data points

p

n

c  HRBF

f(p) = 0

∇f(p) = n

b RBF

f(p)=0
f(p +εn) = ε

f(p -εn) = -ε



T. Ijiri, S. Yoshizawa, Y. Sato, M. Ito & H. Yokota / B-HRBFs for Contour-based Volume Segmentation 

© 2013 Author(s) 
© 2013 The Eurographics Association and Blackwell Publishing Ltd. 

Contour-based volume segmentation. Recently, some 
researchers have presented contour-based 3D segmentation 
systems. Because they are based on the surface-
reconstruction methods discussed above, they can be divid-
ed into direct meshing and implicit approaches. The meth-
od of Bruin et al. [BDP*05] reconstructs boundary surfaces 
from well-organizes contours by directly connecting con-
tour vertices. The SketchSurface system [AM07] initializes 
boundary surfaces by quick-hull [BDH96], and subsequent-
ly applies active contour iterations. Liu et al. [LBD*08] 
initialize boundary surfaces using a Voronoi diagram-based 
algorithm, and then smooth them. All of these methods use 
direct meshing. Due to their surface-reconstruction algo-
rithms, they require well-organized contours, and it is diffi-
cult to manage open or non-planar contours. Some other 
researchers have suggested implicit methods [TO02; 
HKHP11], constructing a signed scalar field from contours 
via RBF interpolation and then extracting its zero-level set. 
These methods can generate a smooth boundary surface 
from various types of contours, such as closed/open or 
planar/non-planar contours. However, it is difficult to fit a 
boundary surface to image edges. 

3.  B-HRBF for Image Segmentation 

In this section, we introduce our B-HRBF formulation, and 
in the next section we present a contour-based interface 
that provides the conditions for constructing B-HRBF.  

Given an s-dimensional r-channel image, we consider an 
(s+r)-dimensional joint domain ࣬௦ା  that connects an 
s-dimensional spatial domain ࣬௦  and an r-dimensional 
range domain ࣬. Grid pixels are arranged in the spatial 
domain, and pixel values (i.e., color) are represented in the 
range domain. In these domains, Euclidean metrics are 
assumed. Connecting a spatial position ܠ א ࣬௦  and its 
associated range value ۷ሺܠሻ א ࣬, an s-manifold embedded 
in ࣬௦ା (i.e., the image manifold) is defined by 

ሻܠሺܚ ൌ ቀ
ܠ

…                                ሻቁܠ۷ሺݓ ሺ1ሻ 

where ܚሺܠሻ א ࣬௦ା and wc is a scaling coefficient to con-
trol the influence of image features on segmentation. A 
similar idea has been employed to accelerate edge-aware 
image filtering [PD06]. 

From user-specified multiple contours, we compute a 
smooth scalar field ݂ሺܠതሻ א ࣬  in the joint domain, where 

തܠ א ࣬௦ା is an arbitrary point in the joint domain. Unlike 
in standard implicit surface reconstruction methods, our 
segmentation boundary is given by the intersection be-
tween the image manifold ܚሺܠሻ and the zero-level set of the 
scalar field ሼܠത א ࣬௦ା|݂ሺܠതሻ ൌ 0ሽ . This intersection is 
equivalent to the zero-level set of the scalar field on the 
image manifold ሼܠ א ࣬௦|݂ሺܚሺܠሻሻ ൌ 0ሽ . Therefore, we 
evaluate the scalar field only on the image manifold and 
extract regions with positive field values as the foreground 
ሼܠ א ࣬௦|݂ሺܚሺܠሻሻ  0 ሽ. 

3.1 Bilateral Hermite Radial Basis Function 

Assume that multiple contours are specified in the spatial 
domain, and N data points are generated by resampling the 
contours as ሼሺܘ, ,ܘ|ሻܖ ܖ א ࣬௦, ݅ ൌ 1,… , ܰሽ . Each data 
point consists of a point pi through which a boundary pass-
es and a unit normal vector of the boundary ni at pi. Each 
data point has the associated range value ۷ሺܘሻ א ࣬. We 
map each point pi and normal ni into the joint domain by 

ഥܘ ൌ ഥܖ          ,ሻܘሺܚ ൌ ܖ ۸ ⁄||ܖ ۸||                 … ሺ2ሻ 

where ܘഥ, ഥܖ א ࣬௦ା  and ۸ א ࣬ሺ௦ାሻൈ௦  is the Jacobian ma-
trix of r(x). Note that each point is mapped to a corre-
sponding position on the image manifold, and each normal 
is mapped so that it is on the tangent plane of the image 
manifold (Fig. 3b).  

Our Bilateral Hermite Radial Basis Function (B-HRBF) 
is given by 

݂ሺܠതሻ ൌ൫ߙ߮ሺԡܠത െ ഥԡሻܘ െ  · തܠሺԡ߮ െ ഥԡሻ൯ܘ  ܲሺܠതሻ
ே

ୀଵ

 

…ሺ3ሻ 

where P(ܠത ) is a polynomial term and ߙ א ࣬  and   א
࣬௦ା are unknown coefficients. The coefficients ߙ and  
are determined by solving the interpolation and gradient 
constraints, as follows: 

݂ሺܘഥሻ ൌ ഥሻܘሺ݂    ,0 ൌ ഥܖݓ  ሺ1 െ ሻݓ ቀ
ܖ 
 ቁ  … ሺ4ሻ 

where wbא ሾ0,1ሿ is a parameter. The linear combination in 
the gradient constraint in Eq. (4) is employed to avoid false 
positive regions (see Section 3.2). Our experiments suggest 
that the commonly used tri-harmonic kernel ߮ሺݐሻ ൌ  ଷݐ
with a linear polynomial ܲሺܠതሻ ൌ ܉ · തܠ  ܾ  provides satis-

Figure 3: An example of B-HRBF-based segmentation (s=2 and r=1). We specify eight data points on a 2D grayscale medi-
cal image (a). The image manifold r(x) forms a height function in a 3D joint domain ࣬ଶାଵ and the data points in ࣬ଶ are 
mapped onto r(x) (b). We compute the B-HRBF ݂ሺܠതሻ, evaluate its values on r(x) (c), and extract regions with positive field 
values (e). The segmentation boundary is equivalent to the intersection between r(x) and the zero-level set of ݂ሺܠതሻ (d).  
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factory results in terms of shape aesthetics. The unit normal 
ni in Eqs. (2) and (4) is computed from the specified con-
tours and their associated image values (see Section 4.1).  

Figure 3 shows an example of 2D grayscale image seg-
mentation (i.e., s = 2 and r = 1). Our segmentation tech-
nique successfully meets the three requirements. The seg-
mentation boundary passes through all data points. High-
contrast image edges form steep slopes on the image mani-
fold. In such areas, the intersection between r(x) and 
ሼܠത א ࣬௦ା|݂ሺܠതሻ ൌ 0ሽ tends to pass through the slopes, and 
the segmentation boundary fits the image edges. Blurred 
image areas form comparably flat shapes on the image 
manifold. In such areas, the smoothness of the B-HRBF is 
dominant comparing to the edge fitting effect, and the 
segmentation boundary becomes smoother. 

 
Figure 4: 3D false positive regions generated by  ݃ሺܠതሻ (a) 
are avoided by ݂ሺܠതሻ (b). See also Fig. 5e for a 2D example. 

3.2 Analysis of the Gradient Constraint in B-HRBF 

Let ݃ሺܠതሻ א ࣬ be a B-HRBF in Eq. (3) constructed by solv-
ing the constraints (i.e., Eq. (4) with wb=1) as follows: 

݃ሺܘഥሻ ൌ ഥሻܘሺ݃   ,0 ൌ  .ഥܖ

Such straightforward formulations have often led to false 
positive regions, in which the ROI and undesired positive 
regions are connected by “narrow tunnels” (Fig. 4a and the 
orange arrow in Fig. 5e). To avoid such errors, we use the 
linear combination in the gradient constraint in Eq. (4). 

The idea behind the linear combination in Eq. (4) is to 
blend the two scalar fields generated in the joint and spatial 
domains. A key observation is that false positive regions 

are not an issue if we compute a scalar field in the spatial 
domain and evaluate it at pixel positions [TO02; HKHP11]. 
Let us denote a standard HRBF [MGV10] in the spatial 
domain by ܪሺܠሻ א ࣬ with ܪሺܘሻ ൌ 0  and ܪሺܘሻ ൌ ܖ . 
Figure 5a shows the segmentation result obtained with 
 ሻ. Although a false positive region does not appear, theܠሺܪ
boundary does not trace the image edges. Consider an 
extension of the spatial domain HRBF ܪሺܠሻ to the joint 
domain such that the extended function ݄ሺܠതሻ א ࣬ is given 
by the B-HRBF in Eq. (3) with the following constraints 
(i.e., Eq. (4) with wb=0): 

 ݄ሺܘഥሻ ൌ ഥሻܘሺ݄   ,0 ൌ ቀ
ܖ
 ቁ. 

While we move each point ܘ onto the image manifold ܘഥ 
using Eq. (2), we fix the normal direction in the spatial 
domain as ሺܖ ሻ் . Figure 5b shows the segmentation 
result with this extended spatial domain HRBF ݄ሺܠതሻ. 

Combining the joint domain HRBF ݃ሺܠതሻ and the extend-
ed spatial domain HRBF ݄ሺܠതሻ with a coefficient wb as 

݂ሺܠതሻ ൌ തሻܠ݃ሺݓ  ሺ1 െ  തሻܠሻ݄ሺݓ

results in our B-HRBF in Eqs. (3) and (4). We do not need 
to compute ݃ሺܠതሻ and ݄ሺܠതሻ separately. 

The linear combination in the gradient constraint of Eq. 
(4) simply scales the range domain elements of ܖഥ by wb. 
We illustrate this scaling effect in Figure 5b–e. With a 
small wb, ݂ሺܘഥሻ is oriented more orthogonally to a tangent 
plane of the image manifold at ܘഥ, and the zero-level set of 
݂ሺܠതሻ and the image manifold do not readily intersect. As a 
result, undesired positive regions are inhibited. With a large 
wb, ݂ሺܘഥሻ is more parallel to the tangent plane at ܘഥ. As a 
result, the zero-level set of ݂ሺܠതሻ tends to cross steep slopes 
on the image manifold, and the boundary fits the image 
edges. Proper selection of wb successfully avoids false 
positive regions, while maintaining the edge-fitting effect 
(Figs. 4b and 5c). In our experience, the fixed value wb = 
0.1 works well.  

a b

Figure 5: Analysis of the gradient constraint in Eq. (4). The top row illustrates the constraints and the zero-level set of the 
scalar field in 2D. The middle and bottom rows show the segmentation boundary and the zero-level sets in the joint domain, 
respectively. The spatial domain HRBF ܪሺܠሻ does not depend on the range domain (a) whereas the extended spatial domain 
HRBF ݄ሺܠതሻ does (b). (b–e) Results generated using our B-HRBF in Eqs. (3) and (4) with different wb. 
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3.3 Evaluating the B-HRBF on the Image Manifold 

When extracting the foreground, we evaluate the B-HRBF 
on the image manifold; i.e., ݂ሺܚሺܠሻሻ. However, evaluating 
the B-HRBF at all pixels of the image manifold is time-
consuming, and may generate extra positive regions which 
are undesired positive regions disconnected from the ROI 
(green curves in Fig. 3e). We avoid such problems by em-
ploying the surface-tracking marching cubes algorithm 
[SFYC*96]. This algorithm starts from several seed cells, 
and visits only those cells that are likely to compose parts 
of a connected surface. The cell represents a unit block to 
resample a scalar field and generate surface patches. In our 
setup, seed cells are determined by evaluating the B-HRBF 
at neighboring pixels of each data point pi (e.g., 9 neigh-
bors for 2D and 27 neighbors for 3D). Because this algo-
rithm evaluates the B-HRBF only at pixels around the 
boundary of an ROI, it is usually much faster than the all-
pixel evaluation, and it also avoids detecting extra positive 
regions that are not connected to the ROI. In Figure 3(c-e), 
several peak-shaped regions around the ROI have positive 
values. Surface-tracking extracts only the boundary of the 
ROI (yellow curve in Fig. 3e). 

4. Contour-based Volume Segmentation 

This section presents our contour-based interface for vol-
ume segmentation. Until a desired segmentation boundary 
is obtained, the user repeats two manipulations: cross-
section placement and contour specification. For the former, 
we provide a cut-stroke interface [IY10] to generate curved 
cross-sections along a stroke (Fig. 6a), as well as three x–y, 
y–z, and z–x planes. After placing a cross-section at a posi-
tion where the ROI appears well, the user specifies a con-
tour by sequentially clicking points on the cross-section. 
We place control points at the clicked positions and inter-
polate them with a degree 3 B-spline curve (Fig. 6b). The 
user can select an open or closed contour and switch the 
ROI sides (red marks in Fig. 6b). When finishing a contour 
specification, the user stores it and moves to the next con-
tour. The user can also activate an already stored contour 
and re-edit it by adding, moving, or deleting control points. 
After each manipulation, the segmentation boundary is 
immediately updated. We compute the segmentation using 
a background thread, and thus the user is able to edit con-
tours without waiting. 

4.1 Modeling Normals from Contours 

We generate a set of data points, ܘ א ࣬௦, by resampling 
all contours at an interval of wint. Let ti be a tangent vector 
of the contour at pi and ci be a normal vector of the cross-
section surface on which the contour is specified. In 
[HKHP11], the normal vector of the boundary surface  
ܖ
 א ࣬௦ at pi was computed as 

ܖ
 ൌ േሺ܋ ൈ ܋||/ሻܜ ൈ ||ܜ ,                   … ሺ5ሻ 

where the sign is determined from the ROI side (Fig. 7d). 
This method is limited to generating normals parallel to the 
cross-section (Fig. 7b), and works well only when the 

cross-section orthogonally intersects with the boundary of 
the ROI. However, cross-sections are usually slanted with 
respect to the boundary. To address this issue, we provide 
the following heuristic approach to automatically generate 
appropriate normals for Eqs. (2) and (4). 

 
Figure 6: User interface for specifying contours. 

 
Figure 7: Modeling normals. We specified two contours 
(b,c) on an artificial volume (a). While the previous method 
(d) was limited to planar normals (b), our two heuristic 
approaches (e,f) generate appropriate normals (c). We 
illustrate the effect of our normal modeling in (g-i). 

Because we want to fit a segmentation boundary to im-
age edges, a normal vector ni should be oriented along the 
image intensity gradient ܫሺܘሻ  at pi. We consider the 
following vector: 

ܞ ൌ ቊ
ܖ
  ܖ   ሻ          ifܘሺܫݓ

 · ሻܘሺܫ  0
ܖ
 െ ሻ          otherwiseܘሺܫݓ

 … ሺ6ሻ 

where wn is a parameter (Fig. 7e). Because ti and ni should 
be orthogonal to each other, vi is projected onto a plane 
whose normal is equal to ti and is normalized. Using this vi 
as the normal ni in Eqs. (2) and (4) works well around 
image areas with high-contrast edges. 

In contrast, in blurred areas without obvious edges, the 
user often specifies many contours, and thus there are many 
intersections among contours. In such areas, we first search 
all intersections between one contour and all others. At the 
k-th intersection, the intersection normal is obtained as 
qk=(tl×tm)/||tl×tm||, where tl and tm are tangent vectors of the 
two intersecting contours (Fig. 7f). We approximate the 
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desired normal ni by blending the intersection normals qk 
with respect to their angles to ܖ

  of Eq. (5) so that the 
desired normal is appropriately influenced by the neighbor 
intersections. Finally, the normal vector ni at pi, used in 
Eqs. (2) and (4), is given by switching the above two cases 
(edge and blurred areas) as follows; 

ܖ ൌ   ቊ
                      if ݀ܞ          ௗݓ
,ܜሺ܀   ܖሻߠ

      ݁ݏ݅ݓݎ݄݁ݐ      
                   … ሺ7ሻ 

where di is the distance from point pi to its nearest intersec-
tion along the contour, wd is a parameter, and R(ti,θi) is a 
rotation matrix along ti with an angle θi. We apply Gaussi-
an smoothing by 10 iterations, using three adjacent contour 
vertices to blend the angles at the intersections, in order to 
compute θi at pi. 

Figure 7g-i shows the effects of the normals we obtain in 
this way. In the example, four planar contours are specified 
on a femur shaft. They are intentionally slanted with re-
spect to the ROI (Fig. 7g). Using ܖ

  as in [HKHP11], the 
incorrect normal directions cause undesirable artifacts (Fig. 
7h). In contrast, our normals in Eq. (7) successfully avoid 
such artifacts (Fig. 7i). There are three parameters: wint, wn, 
and wd. Although we have to tune wint depending on the 
target, fixed values such as wn = 0.5 and wd = 4.0wint work 
well in our experience.  

5. Solving the Linear System of the B-HRBF 

To obtain the ߙ, , ,܉ and ܾ  of B-HRBF in Eq. (3), we 
solve Eq. (4) with orthogonality conditions ∑ ߙ ൌ 0ே

ୀ  
and ∑ ഥܘߙ   ൌ .ே

ୀ  This yields a B(N+1)×B(N+1) 
dense linear system, represented in block form as  

ۉ

ۇ

 ଵ܁
் ڮ ே܁

்

ଵ܁ ۹ଵ,ଵ ڮ ۹ଵ,ே
ڭ ڭ ڰ ڭ
ே܁ ۹ே,ଵ ڮ ۹ே,ேی

൮ۊ

ܛ
ଵܟ
ڭ
ேܟ

൲ ൌ ൮


ଵ܋
ڭ
ே܋

൲,      … ሺ8ሻ 

where B=(1+s+r) is the size of a block. We refer to the 
coefficient matrix of this linear system (8) as the B-HRBF 
matrix ۯ. The blocks Ki,j and Si א ࣬ൈ, and vectors s, wi, 
and ci א ࣬ are defined as  

۹, ൌ ൭
߮൫ฮܘഥ െ ഥฮ൯ܘ െ߮൫ฮܘഥ െ ഥฮ൯ܘ

்

ഥܘ൫ฮ߮ െ ഥฮ൯ܘ െH߮൫ฮܘഥ െ ഥฮ൯ܘ
൱, 

܁ ൌ ൬ܘഥ
் 1
۳ 

൰ , ܛ ൌ ቀ
܉
bቁ ܟ, ൌ ቀ

ߙ

ቁ , ܋ ൌ ൬

0
ഥܖ
൰ , … ሺ9ሻ 

where ۳ א ࣬ሺ௦ାሻൈሺ௦ାሻ is a unit matrix and H߮ א
࣬ሺ௦ାሻൈሺ௦ାሻ is the Hessian matrix of the kernel ߮. As long 
as the data points ܘഥ are pairwise distinct, unique solutions 
are determined from this system [BMS*10]. The blocks 
related to the polynomial term Si are placed in the top and 
left of the B-HRBF matrix to efficiently recycle the de-
composition. Although the B-HRBF matrix is symmetric, 
its diagonal entries are zero, and thus a fast LDL decompo-
sition-based solver does not generate a stable solution 
[PTVF07]. Then we apply an LU decomposition-based 
method; we decompose the B-HRBF matrix in the LU form 
and perform backward/forward substitutions. 

5.1 Recycling LU-Decomposition for Acceleration 

To efficiently decompose the B-HRBF matrix into the LU 
form, we present a recycling scheme based on the Crout 
[PTVF07] and Gondzio [Gon92] algorithms.  

The Crout algorithm is one of the best-known LU de-
composition algorithms. It stores the lower and upper tri-
angle matrices, L and U, in one matrix, in which all diago-
nal elements of L are fixed as 1 and omitted. The algorithm 
visits each element of the original matrix A by column, 
from left to right, and within each column, from top to 
bottom, and modifies the element of A into an element of L 
or U (Fig. 8a). When computing elements of L in each 
column, the algorithm performs row permutations so as to 
reduce rounding errors (i.e., pivoting). 

The full-scratch LU decomposition by the Crout algo-
rithm takes O(N3) amount of time for an N×N matrix, and 
is therefore time-consuming. In our technique, the user 
edits only one activated contour at a time, and the blocks of 
the B-HRBF matrix related to the stored contours do not 
vary during editing. Thus, it is possible to accelerate the 
LU decomposition by reusing blocks of LU-decomposed 
matrices related to the stored contours. 

Suppose that N data points are generated from the stored 
contours and the B-HRBF matrix ۯ in Eq. (8) has been 
decomposed as 

 ۿۯ۾ ൌ                                ܃ۺ  … ሺ10ሻ 

where L and U are lower and upper triangle matrices, and 
P and Q are the row and column permutation matrices 
induced by pivoting of the Crout and Gondzio algorithms.  

Adding a new contour. Under these conditions, the user 
adds and edits an activated contour. If the activated contour 
generates M data points, a new B(1+N+M)×B(1+N+M) 
B-HRBF matrix is obtained as  

൬ ۯ ଶଵۯ
்

ଶଵۯ ଶଶۯ
൰  

where ۯଶଵ א ࣬ெൈሺଵାேሻ  and ۯଶଶ א ࣬ெൈெ  are blocks 
of the activated contour’s data points generated using Eq. 
(9). Note that the number of new data points, M, may vary 
dynamically according to contour modification. By multi-
plying the permutation matrices, we obtain 

ቀ۾ 
 ۳

ቁ ൬ ۯ ଶଵۯ
்

ଶଵۯ ଶଶۯ
൰ ቀۿ 
 ۳

ቁ ൌ ൬ ܃ۺ ଶଵۯ۾
்

ۿଶଵۯ ଶଶۯ
൰… ሺ11ሻ 

where E א ࣬ெൈெ  is a unit matrix. This is equivalent to 
a halfway result in which the Crout algorithm finishes 
decomposing the top-left block. We restart the algorithm 
from this point to decompose the rest (Fig. 8b). This partial 
LU decomposition takes O(N2M+NM2+M3) amount of 
time, and is therefore much faster than the full factorization 
(i.e., O((N+M)3) ) when M<<N. 

 Activating a stored contour. Under the same conditions 
as those assumed in Eq. (10), the user can also select a 
stored contour to activate it. Suppose that the user selects a 
contour that corresponds to {k+1, …, k+W} rows and col-
umns of the B-HRBF matrix A (Fig. 8c). To apply the 
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recycling LU decomposition scheme shown in Figure 8b, 
we have to perform a row/column permutation so that all 
corresponding rows/columns move to the bottom/right of 
the matrix while maintaining the LU form (Fig. 8d). This 
can be done simply by computing the full-scratch LU de-
composition of a permutated B-HRBF matrix; however, it 
is time-consuming. Instead, we adopt the Gondzio algo-
rithm [Gon92]. Given LU-decomposed matrices, this algo-
rithm flips successive rows (or columns) of the original 
matrix and updates the L and U matrices so that they main-
tain the LU feature (Fig. 8e,f). First, all corresponding rows 
are moved to the bottom one-by-one by iteratively applying 
the Gondzio flipping operation, and then all columns are 
similarly moved to the right. 

 
Figure 8: Recycling LU decomposition. We run the Crout 
iterations (a) only in blocks related to the activated contour 
(pink blocks in (b)). When a stored contour is activated, we 
move the related rows/columns (highlighted in red) to the 
bottom/right of the matrix (c,d). The Gondzio algorithm 
updates the LU matrices after successive row flipping (e, f). 

The Gondzio flipping operation takes O(N–k) amount of 
time to flip the k-th and k+1-th rows of an N×N matrix. 
Then it takes O((N–k)2) amount of time to move the k-th 
row to the bottom by applying the operation N–k times. 
Therefore, moving {k+1, …, k+W} rows takes O(W(N–k)2) 
amount of time, much faster than the full-scratch decompo-
sition of an N×N matrix (i.e., O(N3) time) when W<<N or k 
is large enough. Unfortunately, the computational efficien-
cy of this scheme is not obvious when M is large and k is 
small. We select the full-scratch decomposition when 
W>N/2 and k<N/2.  

6. Results and Discussion 

We examined our technique on several real-world volumes 
(Figs. 1, 9–12). All biomedical segmentation results were 
obtained in consultation with physicians and biologists. We 
also compared our technique to other commonly used seg-
mentation methods [BVZ01; AB94] and state-of-the-art 
implicit approaches [TO02; MGV10; HKHP11] (Figs. 13 
and 14). 

Our method has two parameters that have to be tuned in 
accordance with the segmentation target, namely wc, the 
scaling coefficient in Eq. (1); and wint, the interval of con-

tour resampling (Section 4.1). The tuning of wc is intuitive, 
because it controls the influence of the image features. 
With small wc, image features are given little consideration 
and a smooth boundary is obtained. With large wc, image 
features become dominant, and the boundary fits the image 
edges. Fine tuning of wint is unnecessary, because if wint is 
small enough, it does not affect segmentation quality. 
However, it does influence computational time, since a 
small resampling interval generates many data points. We 
choose wint so as to not generate too many data points, such 
as 6.0v (Fig. 1), 4.0v (Figs. 9–11), and 8.0v (Fig. 12), 
where v is the average of the voxel pitches on the x-, y-, 
and z-axes. We also apply a 5×5×5 kernel Gaussian filter to 
the input image three times to obtain visually pleasing 
results. Although other interpolation methods work fine 
with our technique, we apply the tri-linear interpolation to 
obtain a continuous I(x) from input images. 

 
Figure 9: Our segmentation process. Stored contours are 
highlighted in blue, and the activated contours are in red. 

Figure 9 illustrates the femur segmentation process using 
our technique. The user incrementally adds contours until a 
desired result is obtained. While previous contour-based 
methods have focused only on the smoothness of the 
boundary surface [LBD*08; HKHP11; BMS*10], our 
technique fits boundaries to high-contrast image edges. 
Therefore, fewer contours are necessary in our method than 
in previous methods. For example, since the shaft of the 
femur has high-contrast edges, three contours were enough 
to accurately extract the shaft shape (Fig. 9d). 

For the example shown in Figure 10, we extracted all 
bones and muscles of the right thigh from a CT image. The 
joints of bones usually have complex boundaries (Fig. 9A), 
and seed-based methods often result in errors. In addition, 
boundaries between contacting muscles are low contrast 
and are difficult to detect automatically (Fig. 10A,B). Since 
our technique allows the user to directly specify contour 
constraints around ambiguous boundaries, such difficult 
ROIs are correctly segmented quickly. Each region in 
Figure 10 was excised in less than 30 min. We would like 
to emphasize that a ROI with an ambiguous image bounda-
ry requires slice-by-slice full manual segmentation, since 
most semi-automatic methods are not applicable (see Fig. 
13). Our technique achieves large improvement in time 
comparing to the full manual segmentation. 

In Figure 11, we extracted the anal sphincter and tumor 
regions from magnetic resonance imaging (MRI) images of 
the abdomens of two patients. Each anal sphincter region 
was segmented in less than 30 min by placing 10–15 con-
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tours, and each tumor was segmented in 5 min, using about 
4 contours. Medical specialists confirmed that these seg-
mentation results are accurate enough to obtain significant 
information for scheduling and simulating surgeries. Be-
cause our technique makes it possible to extract these re-
gions rapidly, such 3D shapes can be extracted before 
surgery. Applying our technique to clinical settings to 
enhance the quality of surgery is our ongoing goal.  

 
Figure 10: Thigh segmentation. a: pelvis. b: femur. c: 
patella. d: tibia. e: satorius. f: rectus-femoris. g: vastus. h: 
adductor longus. i: gracilis. j: adductor-magnus. k:semi-
membranosus. l:semitendinosus. m:biceps-femoris.[Gra04] 
We set wc=0.025 for bones and wc=0.06 for muscles.  

 
Figure 11: Anal sphincter (green) and tumor (red) regions 
excised from MRI images. We set wc = 0.15. 

Figure 12 shows an example of segmentation of a mouse 
image obtained using a microscopic 3D slicing device. We 
extracted multiple organs for anatomical analysis of genet-
ically mutated and wild-type mice. For this color volume, 
we used the CIE Lab color domain because its Euclidian 
distance is known to be strongly correlated with perceptual 
color differences in humans [TM98]. We constructed an 
image manifold in ࣬ଷାଷ  as r(x) = (x, wcL(x), wca(x), 
wcb(x))T, where L(x), a(x), and b(x) correspond to the L, a, 
and b color values at ܠ א ࣬ଷ, respectively. Similar to other 
examples, the generated boundary correctly passed through 

high-contrast edges of the color volume. Note that we 
extracted multiple ROIs one-by-one, and overlapping re-
gions of adjacent ROIs were selected manually. Computing 
multiple ROIs simultaneously remains as future work.  

 
Figure 12: Color volume segmentation. Brain (orange), 
kidneys (purple), liver (red), lien (light blue), and stomach 
(yellow) regions were extracted from a color volume of a 
mouse. We set wc = 0.1. 

Figure 13 compares our method with common segmenta-
tion methods, such as graph cut [BVZ01] and region grow-
ing [AB94], using 2D CT images. When the target ROI has 
a clear image boundary (top row of Fig. 13), all methods 
achieve accurate segmentation. However, if the ROI has a 
blurred and ambiguous image boundary (bottom row in Fig. 
13), the graph cut fails to generate a smooth boundary 
shape, and region growing fails to stop at the appropriate 
position. Most segmentation methods that rely on local 
image features often cause similar segmentation errors 
around ambiguous image areas. In contrast, our method 
achieves accurate segmentation, since it attempts to gener-
ate smooth boundary shapes around image areas without 
high contrast edges.  

Figure.13. Comparison with common segmentation meth-
ods. Ground truths were manually generated by an expert. 
In graph cut [BVZ01], we specified inside(blue)/outside 
(red) constraints. In region growing [AB94], we specified a 
seed (red). In B-HRBF, we specified 2D points with 
normals (red arrow). The yellow curves are the resulting 
segmentation boundaries. 

To compare our technique to previous implicit surface-
reconstruction methods [TO02; MGV10; HKHP11], we 
computed segmentation boundaries of the femur region in 
Figure 9d, using the same set of contours by four different 
implicit functions (Fig. 14a-d). Around the top joint (i.e., 
femur head), where contours were densely specified, the 
four functions resulted in similar boundary surfaces. How-
ever, the functions with spatial domain representation 
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slightly missed the correct boundary because they did not 
consider image features (see the cross-sections in Fig. 14c, 
d). It is usually labor intensive to correct such small errors. 
Around the shaft, where contours are sparsely specified, 
only our B-HRBF generated a correct boundary. The meth-
ods using the RBF resulted in separated surfaces (Fig. 14b, 
d).   

Table 1 shows the performance of our technique. All 
timings were generated with an Intel Core i7 3.33-GHz 
computer. The computational time depended on the seg-
mentation target and the number of contours. We measured 
the time required to complete the four examples shown in 
Figure 9a-d. As Table 1 indicates, our recycling LU de-
composition scheme drastically accelerated the B-HRBF 
computation. Although the total computation took a few 
seconds when many contours were placed, it was fast 
enough not to disturb the user’s interactions. In addition, 
segmentation was computed on a background thread so that 
the user could edit contours without waiting. 

7. Conclusions 

We have presented a new contour-based user interface, a 
novel B-HRBF formulation for volume segmentation, and 
an acceleration scheme (i.e., recycling LU decomposition) 
for computing the B-HRBF. By combining the B-HRBF 
and the acceleration scheme, we have achieved real-time 
and intuitive volume segmentations for real-world volume 
images. Because our technique allows a user to directly 
place contours on ambiguous image areas, it is especially 
useful for extracting ROIs whose boundaries are difficult to 

detect using automatic algorithms. In our experiments, the 
B-HRBF achieved better segmentation boundaries than did 
previous contour-based techniques. 

One limitation of our technique is that it is difficult for 
novice users to place cross-sections to specify contours. 
Well-distributed cross-sections may enhance segmentation, 
whereas poorly distributed ones may cause unnecessary 
contour specification. In the future, we will attempt to 
automatically generate good arrangements of cross-sections 
and suggest them to users. In this work, we generated a 
scalar field in the joint spatial-range domain (Euclidean 
space). Generating a scalar field directly on the image 
manifold (Riemann space) would be an interesting future 
direction. Our future work will also include investigation of 
automatic parameter tuning and integration of smart 2D 
contouring tools (e.g. livewire, magnetic lasso, or intelli-
gent scissors) with our contour-based interface. In addition, 
we would like to tackle the problem of integrating our 
contour-based interface with level-set-based image seg-
mentation methods [GBFP07; XM11]. 
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Figure 14: Comparison of our technique with three different implicit functions. We computed scalar fields with our B-HRBF 
(a), an extended RBF (b), the HRBF [MGV10] (c), and the RBF [TO02; HKHP11] (d), and extracted their zero-level sets as 
boundaries. In (b), we simply extended the RBF [TO02; HKHP11] to the joint domain by using Eqs. (1) and (2). The scalar 
fields in (a, b) are computed in the joint domain, and those in (c, d) in the spatial domain. For the RBF-based methods in (b, 
d), we generated two additional points for each data point, as in Figure 2b with ε=0.5v, where v is the voxel pitch. 

model 
# of data points 
stored contour 

# of data points 
activated contour 

# of voxels on 
boundary 

Solve  Eq. (8) with  
our recycling LU (sec)

Solve  Eq. (8) without 
our recycling LU (sec) 

evaluate B-
HRBF (sec)

Fig. 9a 99(3) 60 20501 0.22 0.26 0.73 
Fig. 9b 304(10) 24  18834 0.48 1.89 0.76 
Fig. 9c 365(12) 24   29501 0.46 3.27 1.02 
Fig. 9d 555(19) 77 50958 2.75 12.92 1.51 

Table 1: Performance.The columns contain the number (#) of data points related to the stored contours (# of stored 
contours), # of data points related to the activated contour, # of foreground voxels existing on the bundary, time required to 
solve the linear system in Eq. (8) with our recycling LU-decomposition scheme, time requred to solve the linear system 
without the recycling scheme, and time required to evaluate the scalar field via the surface tracking marching cubes.  

Cross section

Head

Shaft

b ca dB-HRBF (our method) RBF(extended to joint domain) HRBF [MGV10] RBF [TO02;HKHP11] 
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