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Figure 1: Eustoma model generated with our technique. From a CT volume (a) of a sample flower (b: photograph), we reconstructed a
flower model (c). Pane (x) is a cross section of the volume (a). The reconstructed flower model was rendered with texture (d).

Abstract

This paper presents a novel three dimensional (3D) flower mod-
eling technique that utilizes an X-ray computed tomography (CT)
system and real-world flowers. Although a CT system provides
volume data that captures the internal structures of flowers, it is
difficult to accurately segment them into regions of particular or-
gans and model them as smooth surfaces because a flower consists
of thin organs that contact one another. We thus introduce a semi-
automatic modeling technique that is based on a new active con-
tour model with energy functionals designed for flower CT. Our
key idea is to approximate flower components by two important
primitives, a shaft and a sheet. Based on our active contour model,
we also provide novel user interfaces and a numerical scheme to fit
these primitives so as to reconstruct realistic thin flower organs effi-
ciently. To demonstrate the feasibility of our technique, we provide
various flower models reconstructed from CT volumes.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling; I.3.6 [Computer Graphics]: Method-
ology and Techniques—Interaction Techniques; I.4.6 [Image Pro-
cessing]: Segmentation—Edge and feature detection.

Keywords: Flower modeling, X-ray CT, active contours.
Links: DL PDF

1 Introduction

Plant modeling has been an important and challenging problem in
the graphics community. Various interesting methods, including
procedural modeling [Prusinkiewicz and Lindenmayer 1990; Palu-
bicki et al. 2009], image-based modeling [Quan et al. 2006], and

sketch-based modeling [Ijiri et al. 2005; Anastacio et al. 2009],
have been presented and have achieved some realistic tree and
plant models. However, it remains difficult to model complex flow-
ers, because flowers usually contain highly occluded structures and
many thin organs contacting one another.

One effective way to model flowers is by reconstruction from real-
world samples. The goal of this paper is to present a reconstruc-
tion technique for realistic and complex flower models. We use an
X-ray computed tomography (CT) system that provides grayscale
volumes whose intensity corresponds to X-ray attenuation rates
and that can clearly capture internal structures of flowers (Fig. 1a).
Anatomically, a flower consists of six types of organs: stem, re-
ceptacle, pistil, stamen, petal, and sepal [Glimn-Lacy and Kaufman
2006]. Given a flower CT volume, we construct surface models of
these organs. For two reasons, however, this is a computationally
challenging problem. One is that a flower consists of many thin
organs with similar CT intensities, and the other is that a flower
has many sheet-like organs (e.g., petals) that contact one another.
Generally, it is difficult to segment such regions when using con-
ventional approaches [Adams and Bischof 1994; Boykov and Jolly
2001].

In this paper, we propose a novel semi-automatic modeling tech-
nique based on a new active contour model consisting of active
curves and surfaces. We approximate flower components by two
key primitives, a shaft and a sheet, and fit them to the CT volume
with our active curve and surface models. When fitting a shaft, we
compute its axis by using the active curve. When fitting a sheet,
we first compute a boundary curve network consisting of the active
curves and then interpolate the network by using the active surface.
We design active curve and surface energies specific to flower or-
gans and present an efficient numerical scheme for our primitive
fitting based on a shortest path algorithm and gradient descent op-
timization. We also provide a set of user interfaces for modeling
each of the six flower organs intuitively with our active curves and
surfaces.

Our implementation works in real-time, and it fits the primitives
immediately when the user specifies control points. Fig. 1 shows a
Eustoma model, generated by our technique in 30 min interaction,
in which occluded internal organs and wavy petals were properly
reconstructed. Because the flower models are reconstructed from
real-world samples, they are potentially suitable for botanical ob-
servations as well as for use in realistic animations and simulations.
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2 Related work

Procedural plant modeling. The best-known procedural mod-
eling method for plants is the L-system [Lindenmayer 1968;
Prusinkiewicz and Lindenmayer 1990]. This has been extended to
simulate a wide variety of plant growth phenomena, such as plant
interactions with their environments [Prusinkiewicz et al. 1994;
Měch and Prusinkiewicz 1996], gradual variation in certain features
along an axis [Prusinkiewicz et al. 2001], and self-organized activa-
tion of buds [Palubicki et al. 2009]. With well-tuned growth rules,
the L-system produces highly realistic plant models. Lintermann
and Deussen [1999] presented a graph-editing interface to support
intuitive procedural modeling. The main focus of these methods,
however, is to model the branching structures of plants.

Sketch-based plant modeling. The sketch-based approach is well
suited to interactive plant modeling because it allows the user to
specify various curved features of plants by simply drawing strokes.
Okabe et al. [2005] presented an algorithm to generate 3D trunks
and branches of trees from 2D sketch strokes. Longay et al. [2012]
applied a space colonization algorithm to sketch-based tree model-
ing. Ijiri et al. [2005] and Anastacio et al. [2009] developed meth-
ods for modeling flower petals (or leaves) by drawing construction
strokes. However, these methods are limited to relatively simple
petal shapes and are not easily employed to generate wavy shapes,
like those seen in Fig. 1.

Image-based plant modeling. Recently, some researchers have
used image-based techniques for tree and plant modeling. Tan
et al. [2008] generated a tree model from a single image. They
grew a branching structure such that its 2D projection was fitted
to the input image and its 3D shape was fairly balanced. Quan
et al. [2006] and Bradley et al. [2013] proposed image-based tree
modeling methods for bushes. They reconstructed 3D point clouds
from multiple photographs of a plant using a structure-from-motion
method and then fitted primitive leaf models to the point clouds.
Zhang et al. [2014] applied a similar method to flower petals. Li
et al. [2013] presented a method for analyzing a growing plant
from time-lapse point clouds obtained by a camera projector sys-
tem. Image-based approaches, however, are difficult to apply to
flower modeling, as flowers usually have occluded organs, and an
image-based approach does not reconstruct invisible objects.

Computed tomography in graphics. CT systems have been em-
ployed in the graphics field to model realistic objects. Reche et
al. [2004] introduced a volumetric rendering method for trees from
photographs. Trifonov et al. [2006] developed a volume reconstruc-
tion system for transparent objects such as glasses by removing re-
fraction optically. Gregson et al. [2012] proposed a stochastic algo-
rithm to capture 3D images of turbulent fluids. Zhao et al. [2011]
used an X-ray CT system to develop volumetric appearance models
of fabrics. Also, X-ray CT devices have become readily accessi-
ble and have been used for botanical analyses (e.g., flower struc-
tures [Stuppy et al. 2003]). However, previous works in botany do
not provide computational methods for modeling flower surfaces.

Curve and surface fitting. There are many useful approaches to
fitting curves and surfaces to point clouds. Here, we briefly review
geometric methods related to our technique. Medial axis [Blum
1967] is one of the best-known skeletal representations and is often
employed to reconstruct curves [Abeysinghe and Ju 2009; Huang
et al. 2013] and surfaces [Amenta et al. 1998]. To incorporate CT
information, we adapt the idea of centeredness [Abeysinghe and Ju
2009] to our shaft and sheet primitive fitting. Our sheet primitive
fitting is related to curve network interpolations, the typical strat-
egy for which consists of mesh refinement and surface fairing; see
[Moreton and Séquin 1992; Nealen et al. 2007; Bessmeltsev et al.
2012] and references therein. On the other hand, these pure geomet-

ric approaches, including traditional splines (e.g., Bézier patches,
subdivision surfaces), do not fit their surfaces to certain volume re-
gions. Implicit functions are also popular for shape reconstructions
(e.g., [Süßmuth and Greiner 2007; Kazhdan and Hoppe 2013]). To
our knowledge, only Ijiri et al. [2013] explicitly provided an im-
plicit function that interpolates both curve networks and volume
edges. Unfortunately, this method is not suitable for modeling
wavy, occluded, or sheet-like surfaces.

Active contours. The active contour model, also called snake, was
proposed by Kass et al. [1988]. It segments the image region by
minimizing an internal energy representing boundary smoothness
and an external energy representing image edge consistency. Os-
her and Sethian [1988] introduced its level set formulation. These
methods have various applications and have been studied widely
in the graphics and vision communities [Sethian 1999]. Cohen and
Cohen [1993] extended the active contour to a surface model for 3D
volume segmentation. Caselles et al. [1997] introduced geodesic
active contours which lay in a Riemannian space defined by image
contents. Active surface models are also useful for shape model-
ing, such as surface reconstruction [Sharf et al. 2006] and mesh
registration [Eckstein et al. 2007]. The topic of active contours is
a popular research field, and many studies have been published in
recent decades. Unfortunately, conventional active contours are not
readily usable for flower CT volumes in which thin surfaces contact
one another, and it is not trivial to extend them for our purpose.

3 Variational Model for Flower CT

This section establishes fundamental formulations of our active
curves and surfaces for CT-based flower modeling. The next section
formulates specific energy functionals for individual flower organs
and presents a set of user interfaces for providing the necessary
constraints. Section 5 introduces an efficient numerical scheme for
fitting the active curves and surfaces.

According to flower anatomists [Glimn-Lacy and Kaufman 2006],
a flower mainly consists of six organs: stem, receptacle, pistil, sta-
men, petal, and sepal (Fig. 2a). When we observe real flower CT
volumes, even those of different species, a specific organ has simi-
lar shapes and structures. Furthermore, most of the organs consist
of shaft- or sheet-like shapes. A stamen filament, for example, has
a shaft-like shape (see Fig. 2G), and a petal has a sheet-like shape
(see Fig. 2H). We therefore assume in this paper that the six organs
consist of two types of key primitives: shaft and sheet. A shaft is a
curved cylinder whose radius varies along its axis, and a sheet is a
surface homeomorphic to an open disk with adaptive thickness. We
model the shafts and sheets by using active curves and surfaces.
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Figure 2: A flower structure (a) and vertical/horizontal cut planes
of a flower CT volume (b, c). A flower has a stem (A); receptacle
(B); pistils consisting of stigma (C) style (D) and ovary (E); stamens
consisting of anther (F) and filament (G); petals (H); and sepals (I).

3.1 Active Curves and Surfaces

Active curve model. We introduce an active curve to model the
shaft and a curve network for constraining the sheet. Consider a



curve C = C(t) ∈ R3 where its parameter t lives in a connected
domain Ωc ⊂ R. We define our active curve energy by

Ec =

∫
Ωc

1

2
|C′′(t)|2 + α|C′(t)TM(C(t))C′(t)| dt (1)

where C′ = dC
dt

, C′′ = d2C
dt2

, a positive definite matrix M =

M(x) ∈ R3×3 specifies the local Riemannian metric at a point x ∈
R3, and α > 0 is a parameter to balance the two terms. The first
and second terms correspond to the internal and external energies of
the active contour [Kass et al. 1988] with extension ofM. The first
term evaluates the smoothness of the curve; it is larger where the
curve bends rapidly. The second term presents the curve length in a
Riemannian space defined byM. Minimizing Eq. (1) gives us our
active curve. Our active curve is controlled by the metricM; we
describe different metrics depending on flower organs in Section 4.

Active surface model. Computing surfaces that fit certain vol-
ume regions is also indispensable for our flower modeling be-
cause petals and sepals have sheet-like shapes. Consider a surface
S = S(u, v) ∈ R3 with its closed boundary curve ∂S where its
parameters (u, v) live in a connected domain Ωs ⊂ R2. We define
our active surface energy by

Es =

∫∫
Ωs

1

2
(S2
uu + 2S2

uv + S2
vv) + β|BSu × BSv| dudv (2)

where Su = ∂S
∂u

, Sv = ∂S
∂v

, Suu = ∂2S
∂u2 , Suv = ∂2S

∂u∂v
,

Svv = ∂2S
∂v2

, B = B(x) ∈ R3×3 is a matrix at a point x, and
β > 0 is a parameter that balances the effects of the two terms.
The first term corresponds to the thin plate energy of the active sur-
face [Cohen and Cohen 1993] and evaluates the smoothness of the
surface. The second term corresponds to surface area in a Rieman-
nian space defined by the metric BTB. Minimizing Eq. (2) gives us
our active surface. Our active surface is controlled by the matrix B,
and we define it so as to fit the surface to petal and sepal regions in
the volume (see Section 4.3).

The second terms in Eqs. (1) and (2) formulate curve and sur-
face energies by using arc-length and surface-area in the volume-
dependent Riemannian spaces, respectively. This idea was in-
spired by the geodesic active contours [Caselles et al. 1997], which
showed equivalence between the computation of active contours
and that of geodesics in a data-dependent Riemannian space. In
contrast to previous active contour models, our technical contribu-
tions include interactive primitive fitting techniques and new energy
models for flower CT volumes.

3.2 Basic Tensor Metric for Flower CT

For defining M and B in Eqs. (1) and (2), let us first consider
an image manifold r = r(x) ∈ R4 and its Jacobian J = J(x) ∈
R4×3 [Sochen et al. 1998]:

r(x) =

(
x
I(x)

)
, J(x) =

(
I3

∇I(x)T

)
(3)

where I = I(x) is the volume intensity at x ∈ R3 and I3 ∈ R3×3

is an identity matrix. This Jacobian J has geometric meaning: if we
useM = JTJ, the second term in Eq. (1) becomes the arc-length
of C on the image manifold (Riemannian covariant metric tensor).
Moreover, if we employ J to B with a wedge product for the second
term in Eq. (2), this term leads to the hyper-surface area of S on the
image manifold.

Let us construct a tensor field T(x) ∈ R3×3 over the volume by

T(x) = Gσ ∗ (J(x)TJ(x)) (4)

where Gσ∗ is a Gaussian convolution with a standard deviation
σ. Eq. (4) is a smooth version of the metric tensor of the image
manifold r where it consists of the coefficients of the first funda-
mental form of r; the eigenanalysis of JTJ provides stretch (lo-
cal metric distortion) magnitudes and their corresponding orthog-
onal directions of r. Let us denote the corresponding eigenvalues
and eigenvectors of T(x) by (λ1, λ2, λ3) and (e1, e2, e3) where
λ1 ≥ λ2 ≥ λ3, and an orthogonal frame consisting of ei by
U = (e1, e2, e3) ∈ R3×3.

e
ଶ

ଵ܍ଵߣ ଶ܍ଶߣ

ଷ܍ଷߣ

a b c d
ଵ

0

105

0

104

e

ଶ

ଵ܍ଵߣ ଶ܍ଶߣ

ଷ܍ଷߣ

a b

0

104

c

0

105

d

ଵ

Figure 3: An eigenanalysis of T(x) in Eq. (4). CT volume is bina-
rized by simple thresholding (a). We visualize the eigensystems on
a petal region in (b) and around the petal edge region in (c). In (d)
and (e), λ1 and λ2 are visualized in red and green, respectively.

Roughly speaking, e1 gives a local axis along which the volume
intensity varies most strongly. Also, e2 and e3 are the second and
third orthogonal axes of intensity variation. Note that e1 is not usu-
ally parallel to ∇I because of convolving Gσ , although the dom-
inant eigenvector of JTJ = I3 + ∇I∇IT is parallel to ∇I with
its corresponding eigenvalue (1 + |∇I|2). Here, ∇I evaluates a
direction corresponding to a maximum rate of intensity variation,
whereas e1 measures a direction of a maximum distortion (total in-
tensity variation around x). Fig. 3 illustrates the eigenanalysis of
an actual flower CT volume. On a petal region that has a sheet-
like shape (Fig. 3b), e1 coincides with a normal vector of the petal
sheet. Also, e2 and e3 are tangent to the sheet, but they are not
aligned in certain directions because λ2 is close to λ3 (i.e., T is
close to JTJ in such regions). Around the edge of a petal region
(i.e., boundary of the petal sheet in Fig. 3c), e1 is parallel to the
petal sheet normal because total intensity variation around the petal
edge is still highest along the petal sheet normal. Because intensity
variation is usually lowest along the sheet boundary curve, e2 and
e3 are aligned with respect to the sheet boundary; e2 is tangent to
the sheet boundary, and e3 is tangent to the sheet boundary curve
(Fig. 3c). Also, λ1 is smaller and λ2 is larger near the petal edge
(Fig. 3d,e). Using these observations on the basic tensor T(x), we
defineM and B in Eqs. (1) and (2) in Section 4.

4 Organ-by-organ Flower Modeling

A flower has a repetitive structure consisting of multiple organs
with similar, but slightly different, shapes. To support efficient
modeling of such a structure, it is important to provide user in-
terfaces specialized to particular components [Ijiri et al. 2005]. In
our technique, we represent the six flower organs (Fig. 2) with the
key primitives (shaft and sheet) that consist of our active curves and
surfaces. We then introduce user interfaces specifically tailored for
particular organs to intuitively provide the constraints necessary for
fitting the primitives.

The overall modeling procedure is shown in Fig. 4. In the begin-
ning, we extract foreground voxels Vf that are intersections be-
tween simple thresholding and textural binarization [Sauvola and
Pietikäinen 2000] (we set its parameters by k = 0.2 with 5 voxel ra-
dius) results. The threshold is selected by the user to cover a whole
flower, including little air or noise (Fig. 4a). In our technique, we
classify the six organs into three groups based on their structural



similarities, and the user constructs organ models sequentially in
the following order: stem/receptacle, pistil/stamen, and petal/sepal
(Fig. 4b-d).
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Figure 4: Overall modeling procedure and cross sections.

In the modeling process, control points are specified using cross
sections of the volume. The placement of cross sections is therefore
important for efficient interaction. After stem/receptacle modeling
(Fig. 4b), we introduce two cross sections to enhance the subse-
quent pistil/stamen and petal/sepal modeling procedures (Fig. 4c,d).
We first construct a local coordinate system (b1,b2,b3) at the top
of the receptacle (Fig. 4b), with b1 parallel to the receptacle axis
and with b2 and b3 orthogonal to b1 and to each other. We then
provide two types of cross sections (Fig. 4e): a planar cross section
perpendicular to b1 (Fig. 4f) and an ellipsoidal cross section with
its center placed at the top of the receptacle (Fig. 4g). In our ob-
servation, a pistil or stamen often appears as a circular spot, and a
petal or sepal usually appears as a single curve in the cross sections.
Thus, with these cross sections, the user readily recognizes flower
organs and intuitively specifies necessary control points. Providing
the two types of cross sections is important to cover various organs.
The planar cross section is useful for treating organs that are aligned
along b1, and the ellipsoidal cross section is useful for treating bent
petals or radially arranged organs. These two cross sections are
used in the pistil/stamen and petal/sepal modeling processes; the
user can always switch them, move the planar cross section along
b1, and modify the ellipsoid radius by mouse manipulations.

4.1 Stem and Receptacle Modeling

Stem and receptacle model. The stem and receptacle are approxi-
mated by a single shaft with a top hemi-ellipsoid. Our active curve
serves as the shaft axis (Fig. 5a). The shaft is divided into a lower
stem part and an upper receptacle part (Fig. 5d).

Modeling process. To model this organ group, the user specifies
several control points {qshaftk ∈ R3} where the shaft axis (i.e.,
the active curve) passes through. The control points are used as
constraints in Eq. (1). To specify a control point, the user places
a cross section where the organ is observed well and clicks on the
cross section (Fig. 5b,c). We provide a cut stroke interface [Ijiri
et al. 2013] in which a stroke drawn on the screen is swept in the
view-depth direction to generate a curved cross section. The control
points {qshaftk } are always sorted according to their height along
the stem. When at least two control points are placed, our technique
generates a shaft whose axis passes through the control points and
fits the medial axis of Vf (blue curve in Fig. 5d). The ratio for
dividing the shaft into stem and receptacle parts and the radius of
the top hemi-ellipsoid are tuned interactively with slider bars so that
the resulting model is fitted to the input flower CT.

Primitive formulation. We formulate the active curve of the shaft
axis that passes through {qshaftk } by minimizing Eq. (1) with the

following metric:

Mshaft(x) =
I3

1 + db(x)
(5)

where db(x) is a discrete distance field in the foreground voxels Vf
from the binarized CT boundary; i.e., db(x) = 0 at the boundary
voxels of Vf . With this metric, a curve that passes nearer the medial
axis of Vf has smaller energy in Eq. (1), resulting in the desired
shaft axis for the stem and receptacle model.

We next compute the radius of the shaft. At a point C(t) on the
active curve C, we construct multiple rays from C(t) such that
they are orthogonal to the tangent direction of the active curve and
are arranged radially with a constant angle interval (Fig. 5e). The
rays are extended until they reach the background voxels or a user-
specified maximum length which is easily estimated from the CT
volume. The shaft radius at C(t) is defined as the average length of
the rays. From the active curve and the radius, a shaft representing
the stem and receptacle is generated (Fig. 5d).
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Figure 5: Stem and receptacle modeling. The model of this organ
group consists of a shaft with a hemi-ellipsoid (a). A cross section
is placed by drawing a cut stroke (b), and a control point is spec-
ified on it (c). A shaft generated from control points (red points)
is divided into stem (green) and receptacle (yellow) parts (d). The
shaft radius is computed by shooting multiple rays (e).

4.2 Pistil and Stamen Modeling

Pistil and stamen model. Since pistils and stamens have similar
structures, they are formed from the same set of primitives: a shaft
and a head (Fig. 6a). The shaft approximates the ovary and style
of a pistil or the filament of a stamen. The head is a free-form
watertight surface representing the stigma of a pistil or the anther
of a stamen. Unfortunately, it is difficult to model the head with
specific primitives because of wide variation.

Modeling process. A flower usually has multiple pistils and sta-
mens, and we model them one by one. For modeling the shaft part,
we provide the same user interface and formulation used in the stem
and receptacle modeling (Section 4.1). To model the head, the user
places seeds in the target region (stigma or anther) by clicking on
the cross section.

Primitive formulation. The shaft part is computed similarly to the
stem and receptacle. The only difference is that the control points
are sorted according to their distance from the receptacle; we com-
pute a discrete distance field dr(·) in Vf by setting dr(x) = 0 at
positions x of all voxels touching the receptacle and sort the con-
trol points according to dr(·). The head part is computed by seeded
region growing [Adams and Bischof 1994]. We grow a voxel re-
gion from the seeds within a user-specified intensity threshold and
convert the region boundary to a surface model (Fig. 6).

4.3 Petal and Sepal Modeling

Petal and sepal model. Petals and sepals are represented with a
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Figure 6: Pistil and stamen modeling. This organ group consists
of a shaft and a head (a). The model is generated from the con-
trol points (red points) and head seeds (green points), specified by
clicking on the cross section (b). (c) provides an example where we
model a pistil and five stamens of a Eustoma.

sheet primitive. As illustrated in Fig. 7a, the sheet primitive consists
of two types of active curves (a beam curve and a boundary curve)
that form a curve network and one active surface that interpolates
the curve network. At a point S(u, v) on the active surface S, two
scalar functions φf (u, v) and φb(u, v), i.e., front and back offsets,
are defined to represent the thickness.

Modeling process. A flower usually has multiple petals and sepals,
and we model them one by one. To model a petal sheet, the user
specifies multiple beam curves on differently positioned cross sec-
tions. A petal appears as a single curve on the cross sections
(Fig. 7b), and the beam curve is placed along this curve. To spec-
ify a beam curve, the user sequentially clicks on the cross section,
as indicated by the arrows in Fig. 7b. Then, our technique places
control points {qbeamk ∈ R3} at the clicked points and optimizes
a beam curve that passes through {qbeamk } and fits the target petal
(Fig. 7c) by minimizing Eq. (1) with the metric given in Eq. (6).

After beam curve specification, our technique generates the sheet
primitive automatically: we compute the boundary curve by mini-
mizing Eq. (1) with the metric given in Eq. (8) and then optimize the
active surface that interpolates the curve network and fits the target
petal region by minimizing Eq. (2) with the matrix given in Eq. (9)
(Fig. 7d-g). Once the sheet primitive is generated, it is rasterized as
a binary volume and visualized on the cross section, which helps
subsequent modeling of the rest of petals (see our supplemental
video for a demonstration).

In our experience, three or four beam curves are sufficient for cor-
rectly reconstructing petals with simple geometric configurations,
and slightly more beam curves are necessary for petals in contact
with many other petals. Also, we do not allow placement of a beam
curve that intersects one already placed.

Primitive formulation. To obtain a sheet primitive that satisfies
the user inputs and fits the target petal region in the volume, we first
construct a curve network consisting of beam and boundary curves
and then interpolate the curve network with the active surface.

Beam curve. A beam curve C passing through the user-clicked
points {qbeamk } is computed by minimizing Eq. (1) with the metric
Mbeam. In a flower CT volume, a petal usually has higher intensity
at its center. To obtain a beam curve that traverses the petal center,
we define the metric by

Mbeam(x) = UD(x)diag(1, a, a)UT (6)

where U is the orthogonal frame consisting of eigenvectors ei of
T(x) at a point x given by Eq. (4), diag(·, ·, ·) is a diagonal matrix,
a ∈ [0, 1] is a parameter (we set a = 0.1), and the centeredness
D(·) ∈ [0, 1] is defined as follows [Abeysinghe and Ju 2009]:

D(x) =
Imax(x)− I(x)

Imax(x)− Imin(x)
(7)
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Figure 7: Petal and sepal modeling. This organ group is repre-
sented with a sheet primitive (a). A beam curve is specified by
clicking on the cross section (b,c). A sheet is generated from multi-
ple beam curves (d-g) with their corresponding boundary curve.

where Imax(x) and Imin(x) are the maximum and minimum inten-
sities, respectively, in the local window centered around x. D(x)
returns a smaller value when the volume intensity at x is higher
than those at neighboring points. With this metric, a curve follow-
ing a higher intensity region and running more orthogonally to e1

has lower energy, resulting in the desired beam curve. In our cur-
rent implementation, we set the window radius at five voxels so that
the window always contains petal regions and background in terms
of our CT devices.

Boundary curve. To provide a constraint for fitting the sheet, we
compute its boundary curve C automatically from the beam curves.
The boundary curve should pass through the end points of all beam
curves. We first reorder all the end points to obtain control points
{qboundk ∈ R3}; as shown in Fig. 8(a,b), all beam curves are ori-
ented in the clockwise direction with respect to b1, and their end
points are sorted using the distance dr(·) from the receptacle.

We compute a boundary curve C passing through {qboundk } by
minimizing Eq. (1) with the metric

Mbound(x) = U
λ1

λ2λ3
diag(λ1, λ2, λ3)UT (8)

where U and λi are given by Eq. (4). With this metric, a curve that
is placed nearer the edge of a petal region has lower energy because
λ1 is smaller and λ2 is larger near the edge (Fig. 3). Also, a curve
along the petal edge has lower energy because e3 is aligned along
the petal edge and λ1 ≥ λ2 ≥ λ3. As a result, this metric provides
an active curve that follows the edge of a petal region (Fig. 8c).
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Figure 8: Curve network for fitting the sheet primitive.

Active surface. Given a curve network consisting of the beam and
boundary curves (Fig. 8c), we compute a surface S ∈ R3 that in-
terpolates the curve network, as shown in Fig. 8d, by minimizing
Eq. (2) with the matrix

B(x) = D(x)diag(1, a, a)UT (9)



where a and D(·) are given by Eqs. (6) and (7), respectively. With
this matrix, a surface that traverses a higher-intensity region has
lower energy (see Eq. (7): D(·)). Also, a surface with a normal
close to e1 has lower energy. Thus, this metric results in a desired
active surface located on the center of the target petal region.

After obtaining the surface, we estimate its thickness, i.e., the front
and back offsets φf (u, v) and φb(u, v). At a point S(u, v) on the
surface S, we calculate the front and back rays; the front ray di-
rects in the normal vector of S(u, v) and the back ray orients in the
opposite direction. The rays are extended until they reach the back-
ground voxels or a user-specified maximum length. Then, φf (u, v)
and φb(u, v) are defined with the lengths of corresponding rays at
S(u, v). We inflate the active surface by the front and back off-
sets to generate a thick petal model. The accuracy of the estimated
thickness depends on the input volume resolution. If necessary, a
few iterations of mesh smoothing (e.g., [Kobbelt et al. 1998]) to the
obtained thick petal model provide a visually pleasing surface.

Additional treatment. Since flowers have various shapes, addi-
tional heuristic treatments are sometimes necessary. When a petal
or sepal has a sharp edge, our boundary curve may be too smooth at
the top of the sheet. To trace a sharp petal edge correctly, we allow
the user to optionally place points around the sheet top by clicking
on the boundary surface of Vf (Figs. 8 and 9). We use these sheet-
top points as additional constraints in {qboundk } for our boundary
curve computation. When a target flower has complex structure
around the receptacle (e.g., Rosa) or a target petal does not have
a sheet-like shape around the receptacle (e.g., Aristroemeria), it is
better to set a simpler metric for our active curve and surface adap-
tively. We useM(x) = I3 and B(x) = 0 for the point x such that
dr(x) < wdist where wdist is a user-specified distance. By using
these adaptive metrics, we are able to model organs in complex CT
volumes.

clicks sheet top 
points

clicks

sheet top 
points

Figure 9: Additional sheet-top points specified to correct the
boundary curve of the sheet at the top.

5 Numerical Scheme

In the previous section, we introduced three types of active curves
(i.e., shaft axis, beam, and boundary curves), one active surface, and
their energy functionals and corresponding metrics. To compute the
active curves and surfaces interactively, we present an efficient nu-
merical scheme consisting of shortest-path-based initialization and
gradient descent optimization.

Our active curve and surface are approximated by polylines and tri-
angle meshes, respectively. Minimizing the first terms in Eqs. (1)
and (2) seeks to create non-uniform parameterizations in Ωc and
Ωs but uniform vertex distributions on evolving curves and sur-
faces during optimizations. This is because minimizing these terms
leads to bi-Laplacians in the corresponding Euler-Lagrange equa-
tions [Kobbelt et al. 1998], and the tangential component of the
Laplacian (also bi-Laplacian) has mesh regularization effect [Wood
et al. 2000; Ohtake and Belyaev 2001]. In addition to obtaining
regular polylines and meshes, this effect works in our favor as a
reparameterization to stabilize optimization steps. We employ fixed
vertex positions and zero Laplacians at the boundary vertices dur-
ing the both curve and surface optimizations. These Cauchy-type

boundary conditions provide interpolations with nicely smoothed
connections to the fixed boundary.

5.1 Active Curve Fitting

Each of the three active curves is represented by a polyline p =
(p1,p2, . . . ,pN ) that passes through the control points {q℘k}
where ℘ = {shaft, beam, bound}. The end points of {pi} and
{q℘k} coincide. We discretize Eq. (1) with metrics (5-8) for a poly-
line p by Ec(p) = 1

2

∑N−1
i=2 |Lc(pi)|

2+

+α

N−1∑
i=1

∣∣∣∣∣
(

pi+1 − pi

h

)T M℘(pi+1) +M℘(pi)

2

(
pi+1 − pi

h

)∣∣∣∣∣ (10)

where Lc(pi) =
pi+1−2pi+pi−1

h2 is a second-order central differ-
ence approximation of a Laplacian at pi with boundary conditions
Lc(p1) = Lc(pN ) ≡ 0 and the polyline vertices are resampled to
have an equal interval h.

Polyline initialization. To obtain a polyline that minimizes
Eq. (10), we adopt a shortest path algorithm to estimate a good
initial approximation because otherwise, undesirable local minima
produce erroneous fitting results. We construct a weighted graph
over the foreground voxels Vf by representing each voxel as a graph
node and each pair of neighboring voxels as an edge (Fig. 10a,b).
We use 26 neighborhoods (3×3×3) for the edge. The edge length
between two neighboring voxels, a,b ∈ R3, is defined by using
the second term of Eq. (10):

(a− b)T
(
M℘(a) +M℘(b)

2

)
(a− b). (11)

Unfortunately, the smoothness term Lc(·) cannot be incorporated
because it requires three successive nodes. We then compute mul-
tiple shortest paths on this graph for all successive pairs of control
points (q℘k ,q

℘
k+1) (Fig. 10c) by using the Dijkstra algorithm [Di-

jkstra 1959]. All paths are jointed sequentially and resampled with
the interval h, resulting in an initial polyline, p0 = (p0

1, . . . ,p
0
N ).
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Figure 10: Polyline initialization. We construct a graph over Vf
by connecting neighboring voxels (a,b); the edge length is defined
by the Riemannian metric (11). A shortest path between successive
control points is computed (c).

Gradient descent optimization. The initial polyline is a good ap-
proximation but usually contains noisy shapes. We update the inner
vertices of the polyline (p2,p3, . . . ,pN−1) by gradient descent it-
erations with the energy (10):

pk+1
i = pki − ε

∂Ec(p)

∂pi
(12)

where the positions of two boundary vertices are unchanged dur-
ing iterations (fixed boundary) and ε is a step size. The itera-
tion stops when the mean change is smaller than a threshold. The
derivative term of Eq. (12) is divided into two terms, ∂Ec(p)

∂pi
=

∂E1
c (p)

∂pi
+

∂E2
c (p)

∂pi
, corresponding to the first and second terms



in Eq. (10), respectively. The first term is calculated by the bi-
Laplacian ∂E1

c (p)

∂pi
= Lc(Lc(pi)) = 1

h2 (Lc(pi+1) − 2Lc(pi) +

Lc(pi−1)) with the boundary conditions Lc(p1) = Lc(pN ) ≡ 0.
We also estimate the second term by using the central difference on
the volume grid, as it is difficult to derive a closed-form formula.

There are several minor implementation issues. Our metricsM℘(·)
are based on the CT volume and then defined only at the centers of
the grid voxels. The polyline vertices pi, in contrast, move freely in
a 3D space. When computingM℘(pi), we simply use the metric
defined at the voxel nearest pi. This is for computational speed, and
in our experience, this approximation works well. Also, all active
curves should be placed inside the foreground Vf . All points of the
polylines are checked after each iteration of Eq. (12), and if a point
pk+1
i steps out of Vf , we pull it back as pk+1

i = pki . The beam
curve is defined on a cross section, and thus a special treatment
is required; when computing a shortest path for initialization, we
consider only the voxels for which the distance to the cross section
is less than twice the voxel pitch (actual edge length of a voxel).
After each iteration in Eq. (12), the polyline vertices are projected
onto the cross section.

5.2 Active Surface Fitting

A petal sheet is given by an active surface S, which interpolates the
curve network (Fig. 8d) and minimizes Eq. (2) with the matrix (9).
We approximate S with a triangle mesh (V, P ) consisting of a set
of vertices V and triangles P . Eq. (2) is discretized by

Es(V, P ) =
1

2

∑
vi∈V

|Ls(vi)|2+β
∑

i,j,k∈P
|B̄(vj−vi)×B̄(vk−vi)| (13)

where vi is the i-th mesh vertex, Ls(vi) = vi − 1
|Ni|

∑
j∈Ni

vj

is a mesh Laplacian at vi with boundary conditions Ls(vi) ≡ 0 if
vi ∈ ∂S, Ni is a one-ring neighborhood of vi, and B̄ is evaluated
at the triangle center B̄ = B(

vi+vj+vk

3
).

Triangle mesh initialization. Similarly to the polyline initializa-
tion, we estimate an initial mesh by using the shortest path algo-
rithm. Fig. 11 depicts our surface initialization procedure. Given
a curve network of the sheet primitive (Fig. 11a), we divide it into
multiple closed loops consisting of four curve segments: bottom,
top, left, and right curves (Fig. 11b). For the top loop of the curve
network, we split its boundary curve into three segments and obtain
a loop formed by four curve segments (Fig. 11a). For each loop, the
right and left curves are resampled with the same number of points.
The bottom and top curves are resampled with the same predefined
interval, and therefore may have different numbers of points, which
is important because petal width is not uniform.

Assume that top and bottom curves consist of point sets indexed as
{i}Nt

1 and {j}Nb
1 , respectively. We build correspondences between

them such that j = bNb−2
Nt−2

(i − 2) + 2c if Nt ≥ Nb; otherwise,
i = bNt−2

Nb−2
(j − 2) + 2c. Then, multiple shortest paths between

corresponding points are computed, as shown in Fig. 11c. The ob-
tained vertical paths are resampled equally. Next, multiple horizon-
tal shortest paths are computed such that each of them sequentially
traverses corresponding points on the vertical paths (Fig. 11d). Fi-
nally, we equally resample each of the horizontal paths and fill all
rectangular areas with triangles to obtain an initial mesh (V 0, P 0)
(Fig. 11e). When computing the shortest path, a Euclidean met-
ric M℘ = I3 is applied for the graph edge length in Eq. (11) to
avoid paths tracing petal’s vascular bundles, which causes undesir-
able non-uniform sampling on the initial mesh.

Gradient descent optimization. Similarly to the curve fitting, we
update the inner vertices of the initial mesh according to the gradi-
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Figure 11: Surface initialization by multiple shortest paths.

ent descent iterations

vk+1
i = vki − ε

∂Es(V
k, P k)

∂vi
(14)

where vki ∈ V k, the positions of boundary vertices are unchanged
during iterations (fixed boundary), and ε is a step size. After each
iteration, the mesh connectivity is updated so as to avoid skewed
triangles by flipping edges if it provides the shorter edge. The
iteration stops when the mean change is smaller than a thresh-
old. The derivative term of Eq. (14) is divided into two terms,
∂Es(V k,Pk)

∂vi
=

∂E1
s

∂vi
+

∂E2
s

∂vi
, corresponding to the first and second

terms of Eq. (13), respectively. The first term is calculated by the
bi-Laplacian ∂E1

s
∂vi

= Ls(Ls(vi)) = Ls(vi)− 1
|Ni|

∑
j∈Ni

Ls(vj)

with zero Laplacian at the boundary (Ls(vi) ≡ 0 if vi ∈ ∂S).
The second term is estimated by using the central difference on the
volume grid. After fitting the surface, we compute front and back
offsets, i.e., sheet thickness, at each vertex (Section 4.3).

6 Results and Discussion

The input flower volumes in this paper were taken by two CT de-
vices: Matsusada precision µRay8700 with a micro-focus X-ray
tube (90kV/18W; max. voltage/power) and Yxlon Y.CT Compact
(450kV) with a milli-focus X-ray tube (450kV/1.5kW; max. volt-
age/power). We performed modeling experiments on a machine
with a 3.33 GHz Intel Core i7 processor and 24 GB RAM. Like the
conventional active contours [Kass et al. 1988; Cohen and Cohen
1993], our active curve and surface models have several parameters.
In all the examples in this paper, we used the following parameters:
σ = 1.5 × l for Eq. (4) where l is a voxel pitch; h = 6.0 × l for
curve resampling interval; ε = 0.005× h4 for Eq. (12); ε = 0.005
for Eq. (14); α = 0.01

h2 for Eq. (10); and β = 0.01 for Eq. (13).

Fig. 12 shows curve-fitting results for the shaft axis (a,b) and the
boundary curve (c,d). The initial curves (a,c) estimated by the short-
est path algorithms, based on Eq. (11), were placed close to desired
positions but contained noisy shapes. They were then optimized by
gradient descent iterations (12) (b,d). Fig. 13(a,b) shows our sur-
face fitting results. An initial surface estimated by multiple shortest
paths was placed very close to the target petal region (Fig. 13a). It
was then optimized and fitted to the thin petal region by gradient
descent iterations (14) (Fig. 13b). We stopped the gradient descent
iterations when the mean change of vertices was less than 10−3× l
where l is the voxel pitch. Because the estimated initial curves or
surfaces were close to the desired locations, the iterations usually
converged quickly. In our experience, they converged before 300
iterations for curves and before 1000 iterations for surfaces. In a
371 × 393 × 361 volume, for example, optimizing a surface with
1794 vertices took less than 1.0 sec.

To confirm the effectiveness of our surface initialization with mul-
tiple shortest paths, we employed a thin plate surface [Kobbelt et al.
1998] computed from the curve network as the initial surface and
applied gradient descent iterations (14) to it (Fig. 13c,d). As a re-
sult, a mesh locally fitted to a neighboring petal, and we could not
obtain a desired petal mesh (see Fig. 13y,z). As in this example,



a b

a b

a b c d
Figure 12: An axis curve of a receptacle (a,b) and a boundary
curve of a petal (c,d). In each pair, the left pane indicates an initial
estimate, and the right pane shows an optimized result.
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Figure 13: Petal surface fitting. We compute initial surfaces with
our method (a) and with a thin plate surface (c), and iteratively
optimize their shapes (b,d). The panes (w-z) show zoomed cross
sections. See our supplemental material for high resolution images.

the initial surface mesh is especially important for CT-based flower
modeling because a flower has multiple petals close to each other,
and thus there are many undesired local minima around the target
petal region. Our surface initialization technique avoids such local
minima and provides aesthetic petal shapes in combination with the
optimization (14).

Although the computational times for our primitive fitting depend
on the resolution of the input volumes and the size of target organs,
our technique works fast enough so as not to disturb real-time inter-
action. For example, the Eustoma model in Fig. 1 was constructed
from an input volume with 371 × 393 × 361 voxels, and fitting a
stem/receptacle or pistil/stamen model took less than 0.5 sec. One
of its petals, shown in Fig. 13b, has 1794 vertices, and computing
its surface from three beam curves took 2.5 sec (including initial-
ization, fitting, offsetting, and rasterization). We think that our im-
plementation is fast enough for interactive flower modeling.

Figs. 1 and 14 show various flower models constructed with our
technique by the authors. Although Y.CT Compact is designed for
high-density materials (e.g., iron), our technique successfully re-
constructs flowers with it (Fig. 14e,g). With our technique, flower
organs are modeled by simple primitives, and thus it is easy to
construct useful uv texture coordinates on them. We mapped tex-
tures obtained from photographs of real flowers onto the models in
Figs. 1 and 14. Since these flower models were generated from
CT volumes, their occluded internal organs were reconstructed
correctly. Our technique successfully extracts petals contacting
neighboring petals (Fig. 14a,h) and having wavy boundary shapes
(Fig. 14d,g). All flower models and their input CT volumes are
available on our web page [Ijiri 2014].

Table 1 provides statistical information for representative flower
models. It took no more than 30 min interaction for modeling each
flower model, except the Rosa model (Fig. 14h), which took about
2 hours (even though we omitted several difficult petals; see below).
Table 1 also indicates that our technique requires, on average, about

1.7 min interaction time and 12.4 control points (mouse-clicks) to
model a single petal. Modeling wavy petals via interactive software
would require many more control points and more manipulation
time; see our supplemental material for an example of interactive
modeling software.
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hg Rosa
CT: μRay8700

f ViolaCT: μRay8700

c Tulip
CT: μRay8700

photo
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Model Fig1 Fig. 14a Fig. 14b Fig. 14c Fig. 14d Fig. 14e Fig. 14f Fig. 14g Fig. 14h
1. Total modeling time 30 min 27 min 19 min 15 min 15 min 18 min 14 min 14 min 106 min

2. Time for thresholding 2 min 2 min 1min 2 min 1min 1 min 1min 1 min 4 min

3. Time for stem & receptacle 2mim 1mim 1mim 1mim 2mim 1mim 1mim 1mim 2mim

4. Time for pistils & stamens 5mim 4mim 6mim 5mim 4mim 4mim 0mim 4mim 0mim

5. Time for petals & sepals 21mim 20mim 11mim 7mim 8mim 12mim 12mim 8mim 100mim

6. Pistils & stamens(seeds/CPs) 6 ( 7/22 ) 6 (7/20) 7 (0/40) 7 ( 17/12 ) 7(4/12) 6 (7/18 ) 0 ( 0/0 ) 7 (3/12) 0 ( 0/0 )

7. Petals & sepals (beams/CPs) 20 (92/229) 15 (69/174) 6 (33/111) 6 (22/52) 6(26/88) 10 (41/102) 10 (34/85) 6 (24/67) 47(229/647)

8. Voxel resolution 371x393x361 369x365x398  418x365x350 321x337x487 393x378x356 211x230x310 389x386x354 353x389x414 482×458×243
9. Voxel pitch 0.17 mm 0.16 mm 0.19 mm 0.14 mm 0.21mm 0.27 mm 0.11 mm 0.27 mm 0.23 mm

10. Threshold / ߱ௗ௦௧ 148 / 100 80 / 100 125 / 100 200 / 20 185 / 20 145 / 90 85 / 20 254 / 20 80 / 20

Model Fig.1 Fig. 14a Fig. 14c Fig. 14g Fig. 14h
Total modeling time 30 min 27 min 15 min 14 min 106 min

Petals modeling time 21 min 20 min 7 min 8 min 100min

Petals (Beams/CPs) 20 (92/229) 15 (69/174) 6 (22/52) 6 (24/67) 47(229/647)

Voxel resolution
(voxel pitch)

371x393x361
(0.17 mm)

369x365x398
(0.16 mm) 

321x337x487
(0.14 mm)

353x389x414
(0.27 mm)

482×458×243
(0.23 mm)

Threshold / ߱ௗ௦௧ 148 / 100 80 / 100 200 / 20 254 / 20 80 / 20

Petal 平均時間: 1.7min,   制約点数12.4個

Eustoma
CT: Y.CT Compact

Gloriosa
CT: Y.CT Compact

Table 1: Statistics of flower models. The third row shows the num-
bers of petals and sepals (beam curves/control points for modeling
them). See our supplemental material for more detail.

Fig. 15 provides a comparison with three conventional segmen-
tation methods: (b) iso-surfaces (thresholding with the marching
cube [Lorensen and Cline 1987]), (c) graph cut [Boykov and Jolly
2001] with about 900 constraints on multiple cross sections, and (d)
seeded region growing [Adams and Bischof 1994] with 20 seeds for
each of five petals. The parameters and control points were speci-
fied carefully, but the results contain both topological and geometri-
cal errors due to the absence of clear volume boundaries at regions
of contacting petals. We believe that our primitive fitting technique
is more suitable for extracting flower organs contacting one another
without clear boundaries (Fig. 15a).

dca Ours Graph Cut Region Growb Iso surface

Figure 15: Comparison with conventional segmentation methods.
Top row shows close-up views of a region with contacting petals.
Red/blue points in pane (c) indicate fore/background voxels for the
graph cut. Colored points in pane (d) are some of specified seeds.

Limitations and Future work. One limitation of our petal model-
ing technique is self-contact: it is difficult to deal with a petal having
a boundary that contacts its own body surface. Such self-contact
can be observed in the highly bent petals of the Rosa (Fig. 14h).
Our mesh initialization method does not suppose such cases and
therefore fails to obtain desired results (see Fig. 16a). Additionally,
a self-contacting petal appears as a closed curve on the cross sec-
tion as in Fig. 16b, and it is difficult to specify a beam curve with
our current implementation. Providing a sophisticated method to
handle such self-contact is a subject for our future work. Also, our
technique requires flower CT resolution that is fine enough for the
user to distinguish target organs on a cross section, because other-
wise, it is difficult to specify valid control points (see Fig. 16 for
fine (c) and failed (d) cases). For this reason, it was difficult to re-
construct pistils, stamens, and several internal petals of the Rosa
(red and yellow arrows in Fig. 14h). Very high resolution X-ray CT
systems might be useful for automatic flower reconstruction. On
the other hand, they have their own limitations, such as imaging re-
gion size due to the fundamental mechanism of X-ray CT, and thus
it is difficult to capture a whole flower with micro order details.
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Figure 14: Our flower models with representative horizontal cross sections of their input CT volumes (a-h). The CT device used for modeling
(i.e., µRay8700 or Y.CT Compact) is given in each pane. Panes (a) and (d) provide side-by-side comparisons with sample flower photographs.
Panes (g) and (h) include a representative wavy petal and a cross section of the Rosa model, respectively.

Other future work includes presenting primitives for more complex
flower organs (e.g., spiny petals or gamopetalous petals), develop-
ing automatic primitive-fitting techniques, extracting texture infor-
mation from multiple photographs, and implementing implicit opti-
mization schemes (e.g., [Eckstein et al. 2007]) to obtain faster con-
vergence.

c: eustoma mRay [371*393*361] pitch:0.1
d: eustoma mRay [123*131*120] pitch:0.5

a
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d

371x393x361, pitch:0.17mm

123x131x120, pitch:0.50mm

C:¥Users¥takashi¥Desktop¥Takaflo
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Figure 16: Limitations of our technique.

7 Conclusions

In this paper, we have proposed a novel flower modeling technique
utilizing X-ray CT devices and real-world flowers. To our knowl-
edge, this is the first reported attempt to use X-ray CT volumes
for flower modeling. We assume that a flower mainly consists of
shaft and sheet primitives, and we fit these primitives to the tar-
get volume regions semi-automatically. We introduced the novel
active curve and surface formulations for the primitive fitting. We
also developed an efficient numerical scheme to compute our active
curves and surfaces based on the shortest path algorithm and gradi-
ent descent optimization. The resulting flower models demonstrate
that our technique is promising for modeling realistic and complex
flowers. We would like to emphasize that sheet-like and/or wavy
shapes are commonly seen in the real world, such as in biologi-
cal membranes and fabrics/clothing. We believe that our technique
contributes to general curve and surface modeling from CT vol-
umes.
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