
Pacific Graphics 2010 Volume 29 (2010), Number 7

P. Alliez, K. Bala, and K. Zhou

(Guest Editors)

submitted to Pacific Graphics (2010)

Contour-based Interface for Refining Volume Segmentation

 Takashi Ijiri and Hideo Yokota

RIKEN

Abstract

Medical volume images contain ambiguous and low-contrast boundaries around which existing fully- or semi-
automatic segmentation algorithms often cause errors. In this paper, we propose a novel system for intuitively

and efficiently refining medical volume segmentation by modifying multiple curved contours. Starting with seg-

mentation data obtained using any existing algorithm, the user places a three-dimensional curved cross-section

and contours of the foreground region by drawing a cut stroke, and then modifies the contours referring to the
cross-section. The modified contours are used as constraints for deforming a boundary surface that envelops the

foreground region, and the region is updated by that deformed boundary. Our surface deformation algorithm

seamlessly integrates detail-preserving and curvature-diffusing methods to keep important detail boundary fea-

tures intact while obtaining smooth surfaces around unimportant boundary regions. Our system supports topo-
logical manipulations as well as contour shape modifications. We illustrate the feasibility of our system by pro-

viding examples of its application to the segmentation of bones, muscles, kidneys with blood vessels, and bowels.

Categories and Subject Descriptors (according to ACM CCS): I.3.6 [Methodology and Techniques]: Interaction
techniques. I.4.6 [Segmentation].

Figure 1. Refining the end of a thigh bone with our system. Starting with segmentation data containing errors (a), the user

places and modifies multiple contour curves (b) to refine the segmented region with voxel-level accuracy (c). Our system

provides a set of user interfaces for the placement of contour curves (d) and their modification (e).

1. Introduction

Volume segmentation is the process of separating volume

data into semantic units. It is a fundamental process for

obtaining useful information from volume data including
shape, topology, and various other measurements. The

segmented data are also useful in constructing models for

physical and interactive simulation. Recent developments

in medical imaging devices, such as magnetic resonance
imaging and computed tomography (CT), increase the im-

portance of efficient and intuitive tools for three-

dimensional (3D) volume image segmentation.

Traditional volume segmentation systems require the

user to specify the foreground region in each two-

dimensional (2D) slice. Such systems accurately reflect the

userôs intention, even though the segmentation process is
very time consuming. Many fully- and semi-automated

systems have been proposed to make the segmentation

process efficient. However, as Owada et al. [ONT05] have

pointed out, no fully automated systems are yet available
because segmentation remains dependent on the userôs

subjective interpretation, which is impossible to obtain

without user intervention. Semi-automated systems allow

users to include subjective information and usually deter-
mine a boundary based on user-provided information and

(a) (d) (e)(c)(b)

Takashi Ijiri and Hideo Yokota / Contour-based Interface for Refining Volume Segmentation

submitted to Pacific Graphics (2010)

low-level features of the volume image (e.g., colors, gradi-

ent magnitudes, or edges). For example, region growing,

one of the most popular semi-automatic methods, starts

from user-provided seeds and inflates an object region con-
sidering local colors and gradients of the image. Semi-

automatic systems involve a fair amount of user interaction,

but still cannot eliminate local errors around the ambiguous

and low-contrast boundaries that often appear in medical
volume images. Achieving fully satisfactory segmentation

with voxel-level accuracy remains difficult . Therefore, we

believe that it is very important to provide an efficient

framework that allows users to refine segmentation results
of existing automatic systems.

This paper proposes a novel system for refining already

extracted region data by modifying 3D contours. The ses-

sion begins with segmented data obtained using any exist-
ing method (Fig. 1(a)). In this work, we used graph cut

[BVZ01; LSTS04] for the initial segmentation. The user

first draws a cut stroke on a screen to place a curved cross-

section and a bounding contour (Fig. 1(d)). Then the user
modifies the shape of the contour so that it traces a plausi-

ble boundary (Fig. 1(e)). The influence of the contour

modification is propagated in the volumetric region through

a boundary surface deformation; we deform a boundary
surface of the foreground region using the modified con-

tours as constraints and update the region inside the de-

formed boundary. Our system can deal with non-planar or

open contour constraints. We support topological contour
modifications as well as contour shape deformations. The

modified contours can be registered as constraints for the

subsequent process. The user repeats the contour construc-

tion, modification, and registration cycle until all undesired
boundaries disappear (Figs. 1(c)).

With our system, the user can easily place contours

where only human but automatic algorithms can perceive.

The number of required contour modifications is relatively
small because they influence the volumetric region through

boundary surface deformation. Our boundary surface de-

formation algorithm maintains the detail features of impor-

tant boundary shapes and achieves a smooth surface around
unimportant boundary regions by combining Laplacian-

preserving and curvature-diffusing methods.

2. Related Work

Our work builds on several existing techniques from differ-
ent fields. We briefly review representative work from the

fields of image segmentation and surface deformation.

Image segmentation. Two-dimensional image segmenta-

tion has received much attention over the past decades,
resulting in many different approaches such as thresholding,

k-mean clustering, active contours, and graph cut algo-

rithms, which have been the subject of at least one survey

[PXP98]. We will explain several approaches that are
closely related to our work. Active contour was originally

presented by Kass et al. [KWT88] and many extensions

have been published [HPE*08]. In that method, a contour

curve is deformed so as to minimise two types of energy:
internal energy that is sensitive to the contour shape and

external energy that is sensitive to the local image features

under the contour. A graph cut algorithm was used for im-

age segmentation by Boykov et al. [BVZ01], and Li et al.

[LSTS04] extended it to provide an interactive image cut-
out tool. These systems require the user only to mark fore-

ground and background regions by drawing rough strokes.

The systems construct an energy function based on user

specification and then minimise it using the graph cut algo-
rithm.

Segmentation algorithms primarily developed for 2D are

often applicable to 3D with minor modifications. Providing

an intuitive interface is important when developing 3D
image segmentation tools. Some systems allow users to

interact with cross-sectional planes to specify foreground

and background regions in 3D space [TLM03; WBC*05;

SHN03]. Others support drawing strokes directly on the
volume rendered screen [ONT05; YZNC05] where the user

input is then passed to various segmentation algorithms.

Note that segmentation algorithms usually rely on low-

level features of the volume image. Hence, they often fail
around the low-contrast areas or regions with ambiguous

boundaries that frequently appear in medical images.

Contour-based mesh construction for volume segmenta-

tion. Some researchers have used mesh construction tech-
niques in volume segmentation procedures. The SketchSur-

faces system [AM07] allows the user to draw closed con-

tours on parallel cross-sectional planes in volume images.

From these contours, the quick-hull algorithm constructs a
closed surface, which is then used as an initial shape in the

active contour method. VolumerViewer [SLJ*09] also con-

structs a closed boundary surface from user-drawn oblique

contours using an algorithm introduced by Liu et al.
[LBD*08] and the voxels inside the surface are segmented

as foreground. These systems produce intuitive contouring

interfaces by integrating mesh construction algorithms.

However, they were not designed for the refinement proc-
ess of regions that have already been segmented. In addi-

tion, these systems are limited to closed and planar con-

tours. Our system, on the other hand, works with open and

non-planar contours, permitting efficient local modification
and effective manipulation of curved objects.

Laplacian surface deformation. Our scheme for refining

the foreground region is based on a surface deformation

method called Laplacian surface deformation [Sor06;
BS08]. It considers mesh deformation as an energy-

minimization problem. The energy function contains the

terms for detail preservation and positional constraints.

Based on this technique, Nealen et al. [NSAC05] presented
a set of sketching gestures to specify constraints. The Fi-

berMesh system [NISA07], which strongly influenced our

system, provides a sketch-based 3D modelling interface

that supports both the initial creation and subsequent de-
formation processes. During deformation, the user can

freely add curved fiber constraints and modify the fiber as a

handle for surface deformation. To the best of our knowl-

edge, these Laplacian surface deformations have never
before been used for volume segmentation purposes.

Takashi Ijiri and Hideo Yokota / Contour-based Interface for Refining Volume Segmentation

submitted to Pacific Graphics (2010)

3. System Overview

Our system efficiently and intuitively refines segmented

regions by modifying multiple curved contours. The input

includes a 3D volume image and foreground region data
(i.e., a binary mask), which may contain errors. Even

though we rely on 3D graph cut [BVZ01; LSTS04] in this

paper for initial segmentation, many other segmentation

techniques are available.

Before starting, the system constructs a boundary surface

enveloping the initial foreground region using the March-

ing Cubes algorithm [LC87]. In the refinement process, the

system first deforms this surface based on the user-
modified contour constraints and updates the region inside

the surface. The typical user's refinement process includes

the following steps: observing a current foreground region

(Fig. 1(a)), cutting the foreground region to construct a
cross-section and contours (Fig. 1(d)), and modifying the

shapes of the contours (Fig. 1(e)). The modified contours

can be registered as constraints. The user repeats these

steps until satisfied with the updated region. Our system
gives the user the option of running a graph cut algorithm

at the voxel level to fit a region boundary to a high-contrast

edge [LSTS04].

In some sense, our system can be seen as a 3D extension
of the boundary editing tool in the Lazy Snapping system

[LSTS04]. It allows the user to refine 2D segmented data

with pixel accuracy by directly modifying the bounding

polyline. However, extending this to 3D is not straightfor-
ward. For example, simply allowing the user to modify a

2D bounding polyline on each slice is tedious; our system

provides a solution to this problem by retaining efficiency

for 3D situations while maintaining a user interface similar
to that proposed by Li et al. [LSTS04].

4. User Interface

Visualisation. Efficient visualisation of the current fore-

ground region is very important for supporting the user in
detecting suspicious boundary parts that need to be fixed.

As shown in Figure 2, the system provides three visualisa-

tion modes: surface rendering, binary volume rendering,

and surface rendering with 3D volume texture. Surface and
volume rendering helps the user to observe the shape of the

region, which provides significant information. Textured

surface rendering allows one to examine the volume image

on the boundary surface. Because the boundary color of an
object is usually isotropic, at least locally, a boundary that

exhibits significant changes in color likely contains errors.

Our textured surface rendering helps the detection of such

suspicious boundary regions.

Cut stroke. The user draws a cut stroke running across the

suspicious boundary regions on the screen to construct a

curved cross-sectional surface and contours. The cross-

sectional surface is constructed by sweeping the user-drawn
2D cut stroke along the depth direction. Contour curves are

constructed by computing intersections between all edges

of the boundary surface and the cross-sectional surface, and

then aligning the crossing points. Thus, a contour curve C

is a polyline, each vertex { pi} of which is on an edge (vk,

vl) of the boundary surface:

ὅ Ἰ ȿ Ἰ ÔἾ ρ ÔἾȟ Ôɴ πȟρ Ȣ

Figures 1(d) and 3 demonstrate the effects of the cut

stroke. If the user draws a cut stroke along a curved object

such as a bowel, the system generates a contour that cap-

tures the curved features of the object very well (Fig. 3(a)).

A cut stroke running across the object multiple times re-

sults in multiple contours (Fig. 3(b)). When a cut stroke
starts from the outside and ends inside the object, the sys-

tem returns an open contour curve that is useful for local

shape editing (Fig. 3(c)). To support an efficient 3D navi-

gation, our system provides an auto-view-transfer option in
which the camera immediately flies in front of the generat-

ed cross section after drawing a cut-stroke.

After constructing a contour curve, the system detects

crossing points between the newly constructed contour and
already stored contours. This detection is performed on the

2D screen plane; the system projects contour curves onto

the screen and checks the existence of intersections be-

tween the curves. If crossing points exist, we subdivide
intersecting line segments, back-project the detected cross-

ing points, and place red spheres at the points (Fig. 3(d)).

These crossing points are fixed in the subsequent process.

Figure 2. Three rendering modes for the knee section of a

thigh bone. While surface (a) and volume (b) rendering

display suspicious shapes in the region, the textured sur-

face (c) clearly illustrates significant changes in boundary
color (red circle).

Figure 3. Effects of cut-strokes.

Contour deformation. After setting contours, the user

deforms their shape so that they trace plausible boundaries

on the cross-sectional surface. Our system provides five
tools for this purpose: drawing, point-dragging, smooth-

rubbing, snake-rubbing, and contour-deletion tools (Fig. 4).

The drawing tool allows the user to modify a part of the

contour by drawing its desired shape on the cross section
(Fig. 4(a)). The point-dragging tool provides a similar inter-

face to that of fiber deformation described by Nealen et al.

[NISA07]. It allows the user to grab a contour at any point

(a) (c)(b)

(a) (b) (c) (d)

Takashi Ijiri and Hideo Yokota / Contour-based Interface for Refining Volume Segmentation

submitted to Pacific Graphics (2010)

and pull it to the desired location (Fig. 4(b)). Deformation

of the contour preserves local details as much as possible.

The smooth-rubbing tool has the same interface as the rub-

bing tool of Nealen et al. [NISA07]; if the user drags the
cursor back and forth in a rubbing motion on a part of the

contour, the rubbed region becomes smooth (Fig. 4(c)).

While the snake-rubbing tool has the same interface as

smooth-rubbing, the rubbed region moves along the gradi-
ent direction to fit edges like the snake [KWT88; HPE*08].

Note that snake-rubbing works well only when the target

cross-section has high contrast edges as shown in Figure

4(d). Finally, the contour-deletion tool allows the user to
delete undesired contours when multiple contours exist (see

Section 5.2 in detail). During contour modification, the

crossing points highlighted with red spheres are fixed, ex-

cept in the case where the user explicitly drags them using
the point-dragging tool. Contour deformation is limited to

the cross-sectional surface.

Figure 4. Contour manipulations using the drawing tool(a)
point-dragging tool(b), smooth-rubbing tool(c), and snake-

rubbing tool(d).

Figure 5. Contour ROI Definition. With the original peel-

ing interface(a)[IMH05], the user temporally drags a point

far from the picked position to expand the ROI (b), and

then releases it at the desired location. We display a circle
around the cursor and it determines the initial ROI (c).

In the original FiberMesh [NISA07], the fiber deforma-

tion tool (point-dragging in this paper) determines the de-

formed region of the fiber (region of interest, ROI) using a
peeling interface [IMH05]; starting from a single point, it

expands the ROI proportional to the amount of pulling. Our

preliminary user study indicates that this peeling is difficult

for novice users. The peeling interface forces the user to

perform two tasks in a single dragging operation: ROI de-

termination and point placement. We found that almost all

users simply drag the point to the desired position without

considering the ROI resulting in unwanted spiky contours
(Fig. 5(a)). We added a simple extension to overcome this

problem. Around the cursor, we display a circle whose

radius can be controlled using the mouse wheel. We then

determine all contour segments in the circle to be the initial
ROI. This simple extension successfully prevents novice

users from generating undesirable spiky shapes (Fig. 5(c)).

5. Enveloping Surface Deformation

We provide two surface-deformation algorithms to imple-
ment the user interface described in Section 4.1. The first

one deforms the boundary surface to satisfy the user-

specified contour constraints. The second modifies the

surface topology so that it satisfies the new contour layout.

5.1 Surface Deformation by Contour Modification

Two types of contours exist in our setup: those that have

already been modified and registered, and those that are

currently being modified (i.e., active contours). The surface
deformation is localised to a part of the surface near the

active contours (ROI). The ROI is defined as an N-ring

neighborhood of the surface edges constrained by the active

contours, where N is a user's parameter (Fig. 6). Notice that
since the boundary surface is generated by the Marching

Cubes algorithm and the vertices are almost uniformly

distributed. Thus, the N-ring neighborhood of the active

contour generates a fair ROI in practice.

Figure 6. ROI (blue mesh) is defined as an N-ring neigh-

borhood of an active contour marked by a red arrow.

Constraint-based surface deformation has been the sub-
ject of active research. One of the most well-known meth-

ods is Laplacian surface editing [SLC*04], which deforms

a surface while preserving both the user constraints and the

geometric details as much as possible. This method en-
codes geometric detail at each vertex using Laplacian coor-

dinates and updates the shape of the surface by solving the

following minimization problem:

ÁÒÇÍÉÎ
Ἶ

ȿȿflἾ ȿȿ ȿȿἾ Ἶȿȿ ȢȢȢρ

where flẗ is a discrete graph Laplacian operator, is a

Laplacian vector of the initial surface at the ith vertex vi,

and Ἶ is a constraint position of vi. This quadratic energy-

minimization problem results in a sparse linear system.

While Laplacian surface editing preserves local details, the

(b)

(c) (d)

rubbing

(a)

(a) (b) (c)

Takashi Ijiri and Hideo Yokota / Contour-based Interface for Refining Volume Segmentation

submitted to Pacific Graphics (2010)

FiberMesh system achieves a smooth surface in which the

Laplacian magnitude (LM, i.e., the approximation of scalar

mean curvature) is smoothly distributed. FiberMesh in-

cludes a two-step process. It first smoothly distributes LMs
{ ci} to all vertices by solving the following optimization,

ÁÒÇÍÉÎ ȿȿflὧȿȿ ȿȿὧ ὧȿȿ ȢȢȢς

where the first term requires that the neighboring LMs vary

smoothly and the second term requires the LMs at all verti-

ces to be near the current LMs. After obtaining the LM
distribution, FiberMesh estimates a Laplacian vector for

each vertex as, ὧ ! ἶ and solves the optimi-

zation of Eq. (1) by using as the target Laplacian. The

Ai is an area estimate and ni is the normal of vi. FiberMesh

repeats solving Eqs. (2) and (1) until convergence. While

this algorithm requires solving a sparse linear system sev-
eral times, the expensive matrix factorization is required

only once at the beginning.

We would like to apply these two techniques to our sit-

uation; however, selecting the appropriate one is difficult.
In our system, the surface represents a boundary shape of

the initial (or current) foreground region. In a surface sec-

tion around contours with little or no deformation, the local

shape is important and geometric details should be pre-
served. In contrast, in a surface region around highly de-

formed contours, the local shape is no longer important and

a smooth surface is preferred.

For this reason, we combine detail-preserving and LM-
diffusing surface deformations by switching between them

seamlessly for regions around slightly deformed and highly

deformed contours. To do this, we first diffuse displace-

ment amounts { dpj} of contour's vertices { pj} over the all
vertices of the boundary surface { vi} , similarly to the LM

diffusion in Eq. (2) as

ÁÒÇÍÉÎȿȿflὨȿȿ ȿȿὨ Ὠ ȿȿ ȿȿὨ Ὠ ȿȿ

...(3)

where di is the diffused displacement amount at vi. While
the first term requires that the neighboring displacement

amounts vary smoothly, the second term constrains the

displacement amounts at each pair of surface vertices

which correspond to a contour's vertex. Note that each con-
tour vertex pj is on an edge (vk, vl) of the surface.

Next, we compute a new vertex position by solving the

following least-square system:

ÁÒÇÍÉÎ
Ἶ

 ὥȿȿflἾ ȿȿ ρ ὥ ȿȿflἾ ȿȿ

░

 ȿȿὸἾ ρ ὸἾ Ἰȿȿ ȣ τ

While the first term requires that each vertex Laplacian be

close to the initial Laplacian (i.e., detail preservation), the
second term requires that each Laplacian be close to the

Laplacian integrated from diffused LMs (i.e., LM diffu-

sion). A set of scalar values ὥᶰπȟρ is calculated by

 ὥ Ὠ Ὧὶȟ ὥ ρὨ Ὧὶȟ, where k is a global

parameter that we set to 5.0 and r is the voxel edge length.
The third term places point constraints on edges. The point

constraint on an edge is defined with one parameter t, pj =

tvk + (1ït)vl [NSAC05]. This hybrid method successfully

combines the advantages of the Laplacian-preserving and
LM-diffusing methods (see Section 6 in detail).

Note that a single contour modification does not guaran-

tee that surface regions far from the contour are appropri-

ately located along the boundary of the volume image. To
address this issue, the SketchSurface system adjusts the

surface by using the image information (i.e., active contour

method). However, in our practical observation, surface

regions that requires modification usually located around
low-contrast or ambiguous areas of the image, since the

initial segmentation algorithm fails around such regions.

Image-based methods are difficult to apply to such regions.

Instead, we simply allow the user to iteratively place and
modify next contours until wrong surface region disappears.

5.2 Surface topology modification

When the user deletes a contour using the contour deletion

tool, the topology of the surface must be changed to satisfy
the new contour layout. Our system deals with two layout

types: a parallel layout in which several closed contours are

arranged in parallel, and a nested layout in which two con-
tours are nested (Fig. 7). The system does not allow the

deletion of open contours or the outer contour of the nested

layout because the resulting boundary surface would be

unpredictable and such deletion is practically unnecessary.

Figure 7. Surface topology types for a parallel layout (top)

and nested layout (bottom). The same contour layout is
constructed with two isolated closed surfaces (p0, n0), a

single bent closed surface homeomorphic to a sphere (p1,

n1), or a surface homeomorphic to a torus (p2, n2).

Figure 8. Surface topology modification for p0, p1, and p2.
The system cuts the surface at the target contour, removes

isolated surface parts, and smoothes the remaining cross-

sections. The same process is applicable to n0, n1, and n2.

Takashi Ijiri and Hideo Yokota / Contour-based Interface for Refining Volume Segmentation

submitted to Pacific Graphics (2010)

We do not deal with the layout in which more than two

contours are nested because such layouts rarely appear in

practice.

When two closed contours are placed in parallel or are
nested, three possible boundary surface topology types

exist for each (Fig. 7). When the shorter contour is deleted,

we modify the surface topology. Figure 8 shows how our

system manages six topology types using the same process.
First it cuts the surface at the target contour and fills the

holes in the cross-section. In types p0 and n0, this process

splits a closed surface into two parts. In types p1 and n1, a

closed surface is separated out. In types p2 and n2, no new
isolated part is generated. Then the system checks whether

the separated surface parts have contour constraints. If not,

it simply removes the separated part. Finally, it smoothes

the remaining cross-sections.

6. Results and Discussion

We tested our prototype system on a 2.93-GHz Intel Core

i7 CPU. Our system provides an interactive environment to

the user: after each action, it updates the boundary surface
and foreground region in real time and returns immediate

feedback.

Figure 9 illustrates the feasibility of our surface deforma-

tion algorithm. The user refines thigh bone data (Fig 9(a))
by placing and modifying contours (Fig 9(b)). In this ex-

ample, only the region at the end (head) of the bone con-

tains errors. The contours around the head are modified

significantly while those in the other region retain their
initial shape. In this situation, the user wants to have a

smooth surface around the head and keep the sharp features

(initial shape) intact in the other region. However, Lapla-

cian preservation keeps the sharp features for both the head

and the other region (Fig 9(d)). On the other hand, LM

diffusion returns a smooth surface for both regions result-
ing in the loss of important sharp features (Fig 9(e)). Our

algorithm combines the best of both methods, obtaining a

smooth surface around the head while maintaining impor-

tant detail features in the other region (Fig 9(f)). Figure 9(c)
shows the distribution of ai value; the values 0 and 1.0 cor-

respond to the colors black and red. In the head region with

large ai values (red), the LM diffusion effect predominates,

resulting in a smooth surface. In the region with small ai

values (black), the Laplacian-preservation is dominant and

sharp features are maintained.

Figures 1 and 10 show the results of the thigh bone seg-

mentation which was initially segmented with a 3D graph
cut and subsequently refined with our system. In a CT im-

age, a thigh bone has a high-contrast boundary in the shaft

region and no refinement is required. However, on the top

and bottom, cancellous (low intensity) bone is covered with
thin cortical (high intensity) bone, making accurate region

segmentation difficult for automatic algorithms. With our

system, the user can refine the two sides of the thigh bone

by placing and modifying about 10 contours in less than 15
minutes for each (Figs. 1 and 10). In this thigh bone exam-

ple, we found a hole (surface topology type n2) that our

contour-deletion tool successfully removed (Fig. 10left).

Figure 10. Effect of contour deletion(left) and refined knee

joint region(right). If the user clicks on an undesired con-

tour, the system removes the hole in the boundary surface.

Figure 11. Kidney and associated veins. The user replaced

contours on complex and low contrast cross sections.

Figure 11 shows a segmented kidney and associated
veins from a CT image. The hilum of the kidney has a

complicated blood vessel structure. The user must place a

boundary between the kidney and the external blood vessel

regions accurately (Figs. 11(b)). The vein in the CT image
has an extremely low-contrast boundary, which is almost

impossible to segment automatically. Our system allows

the user to trace plausible contours intuitively (Figs. 11(c)).

(b) (c)
(a)

Figure 9. Surface deformation using three algorithms.

(e) LM-diffusion (f) Our method(d) Laplacian preserve

(a) (b) (c)

head

Takashi Ijiri and Hideo Yokota / Contour-based Interface for Refining Volume Segmentation

submitted to Pacific Graphics (2010)

Muscles in CT images are also a difficult target for auto-

matic algorithms because they usually have a low-contrast

boundary. Refining 1 bone and 11 muscles with our system
took less than 4 hours (Fig. 12). In this example, very sharp

features of muscles were reconstructed (Figs. 12(a) and (b)).

We believe that the userôs input is essential for accurately

tracing the ambiguous boundaries shown in these examples.

Finally, we performed a preliminary user study to verify

the usability of our system. We asked a technician working

on the development of medical imaging devices to refine

segmentation data of a partial bowel and a thigh bone with
our system. Although the subject has used 2D segmentation

systems, he has never experienced 3D systems. After one

hour tutorial, he successfully refined segmentation data as

shown in Figure 13. It took about 45 minutes to reconstruct
a part of bowel by placing about 20 contours (Fig. 13(b)).

The user first refined contours along the curved axis of the

bowel and later refined contours perpendicular to the axis.

It also took about 15 minutes for refining each side of thigh

bone (Fig. 13(a)). During modification, the drawing, point-
dragging, and smooth-rubbing tools were evenly well used,

but the snake-rubbing tool was almost useless since regions

which requires modifications usually has ambiguous edges.

As we mentioned in Session 2, SketchSurface [AM07]
and VolumeViewer [SLJ*09] applied contour-based mesh

construction methods to volume segmentation purpose. In

these systems, the segmentation process starts from scratch:

the user draws multiple contours in the 3D space only with
the cross-section visualisation. On the other hand, our sys-

tem has an initial segmentation obtained with arbitrary

algorithms. We believe that minor modification of contour

shapes is much easier than drawing contours from scratch.
In addition, while these systems are limited to closed and

planar contours, we support to handle open and non-planar

contours, which permit efficient local modification (e.g.,

sides of thigh bone in Fig. 10) and effective manipulation
of curved objects (e.g., bowel in Fig. 13 (a)). Besides, it is

not straightforward to apply these two systems [AM07,

SLJ*09] to refining already extracted regions. These sys-

tems compute a boundary surface satisfying contour con-
straints without considering a detailed shape of the initial

segmented region, and then they fail to maintain the impor-

tant detail features, similarly to Figure 9 (e).

7. Conclusion

We designed a contour-based interface for efficiently refin-

ing the foreground region of medical images. We have

provided a set of tools for placing, modifying, and deleting

contour constraints for an intuitive refinement process. We
also introduced a constraint-based surface-deformation

algorithm that seamlessly combines the detail-preserving

and LM-diffusing methods. Automatic systems have diffi-

culty generating satisfactory segmentation results. Our
system can serve as an efficient post-processing method for

any existing automatic system; the user simply refines the

region until completely satisfied.

Depending on the purpose of the segmentation, e.g., con-
struction of a mesh model for simulation, our boundary

surface is available as is, and our system allows refining the

surface in more detail than the voxel level. Therefore, our

system would be useful for constructing a model that cur-
rently available imaging devices cannot capture in suffi-

cient resolution, e.g., microscopic images of cells.

One obvious limitation of our system is that it does not

support arbitrary topological modifications. Providing a
more flexible topology editing tool that supports not only

deleting but also merging contours on the cross sectional

surface is remaining as our future work. Another limitation

is that it is difficult to efficiently refine thin strained or
membranous regions, such as blood vessels or aponeurosis.

In such regions, their medial axis shapes better explain the

desired regions than the boundary shapes and then our con-

tour-based interface often falls into tedious process. We
would like to provide an axis based refinement tool special-

Figure 12. The regions of 11 femoral muscles and 1 bone

were refined. Two representative muscles are shown in (a-
c). Very sharp regions are correctly reconstructed (red

circles) by tracing narrow boundaries (b).

Figure 13. Bowel and thigh bone refined by the test user.

(b)(a) (c)

(e)(d)

