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Abstract 
Animations of characters with flexible bodies such as jellyfish, snails, and, hearts are difficult to design using 
traditional skeleton-based approaches. A standard approach is keyframing, but adjusting the shape of the flexi-
ble body for each key frame is tedious. In addition, the character cannot dynamically adjust its motion to re-
spond to the environment or user input. This paper introduces a new procedural deformation framework (Proc-
Def) for designing and driving animations of such flexible objects. Our approach is to synthesize global motions 
procedurally by integrating local deformations. ProcDef provides an efficient design scheme for local deforma-
tion patterns; the user can control the orientation and magnitude of local deformations as well as the propaga-
tion of deformation signals by specifying line charts and volumetric fields. We also present a fast and robust de-
formation algorithm based on shape-matching dynamics and show some example animations to illustrate the 
feasibility of our framework. 
 
Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Three-Dimensional Graphics and Realism]: 
Animation.  

 

1. Introduction 

Most animation authoring methods are designed for rigged 
characters whereby the character body is divided into near-
rigid parts such as arms and legs, and the user controls the 
joint angles between them. However, little work has dealt 
with the animation of flexible objects without specific 
skeletal structures such as jellyfish, snails, slugs, hearts, 
and stomachs. While the typical approach to this type of 

object is to set a sequence of discrete key poses and inter-
polate them in time, specifying individual key poses by 
manipulating many control points is tedious work. Fur-
thermore, making these objects respond to external forces 
such as contacts and collisions after all key poses are com-
plete is very difficult.  

To address this issue, we propose a procedural deforma-
tion framework (ProcDef) for designing animations of non-
articulated objects that are difficult to handle using existing 

(d)
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Figure 1: Swimming jellyfish. The user constructs an orientation field (b) and a phase-shift field (c) on a tetrahedral model 
(a) and sets deformation charts (d). Based on the specified parameters, the system synthesizes global motions induced by the 
accumulation of local deformations (e). We visualize the propagation of deformation signals in (f), where excited vertices are 
highlighted in red. 
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skeleton- or keyframing-based methods. The key observa-
tion is that the deformations of such flexible objects are 
driven by expansion and contraction of the local tissues. 
Local tissues receive some excitation signals and transform 
their shapes individually, and then the accumulation of the 
local deformations induces the global motion. For example, 
a heart is a muscular organ in which muscle fibers are 
aligned in a spiral direction. When beating, the heart mus-
cles receive an electronic signal arising in the sinoatrial 
node and locally contract along their fiber orientations. 
This induces a twisting global motion. Based on this ob-
servation, we propose to create the global motion of a flex-
ible object by controlling its local deformations. The user 
specifies local deformations such as contraction and expan-
sion, and the system synthesizes the global motion by as-
sembling the local deformations and taking the external 
forces into account. We also show that stimuli–response 
deformations can be naturally designed within this frame-
work. 

We present an efficient design scheme for complicated 
local deformation patterns. We use line charts and three 
volumetric fields over the model; these are an orientation 
field, an amplitude field, and a phase-shift field. The line 
charts, called deformation charts, define cyclic time-
varying stretching and contraction of a local element in 
three directions. The orientation field defines the direction 
of the local stretching and contraction. The amplitude field 
allows the space-dependent modulation of the deformation 
magnitude. This field is particularly useful for designing 
bending motions. The phase-shift field allows the user to 
design excitation propagation phenomena. We provide a 
direct manipulation interface for the line charts and paint-
ing interfaces [TOII08] for constructing these three volu-
metric fields.  

We also introduce a robust and efficient algorithm based 
on shape matching dynamics [MHTG05; RJ07] for compu-
ting global motions induced by the accumulations of local 
deformations. Our algorithm is an extension of lattice 
shape matching (LSM) [RJ07] with two main differences. 
First, while LSM uses the original lattice shape as a rest 
configuration, we locally deform the original shape based 
on the user-specified parameters and use the deformed 
shape as a rest configuration. Second, we use a tetrahedral 
mesh instead of a regular lattice. Since we rely on shape 
matching dynamics, we can share the same advantages 
with them: unconditional robustness and low computation-
al cost. 

Figure 1 shows an example animation of a swimming 
jellyfish. The user can easily design such animations by 
specifying the volumetric fields and the deformation charts. 
The resulting animations are computed in real time and the 
user can interactively add external forces by dragging part 
of an object with the mouse during the animation. 
Contributions:  
- Introducing a new procedural animation framework whe-
reby global motions are induced by accumulations of local 
deformations (Sec. 3).  

- Presenting a sophisticated scheme for designing local 
deformation patterns using line charts and three volumetric 
fields (Sec. 4).  
- Showing that shape matching dynamics are useful for 
synthesizing motions driven by local deformations (Sec. 5).  
- Showing some example animations demonstrating the 
effectiveness of the approach (Sec. 6). 

2. Related Work 

Local-to-global deformation: The concept of local-to-
global deformations was originally presented by Barr 
[Bar84]. However the paper only dealt with relatively sim-
ple cases where local deformations are globally consistent. 
When local deformations contain some conflicts, local 
shapes need to compromise each other. Such deformations 
were presented in biologically motivated studies. Rolland 
et al. [RBC03] studied the asymmetric growth of the petals 
of a snapdragon in two dimensions. They represented a 
petal with an elastic triangular mesh and emulated its 
growth by modifying the rest length of each edge. Ijiri et al. 
[IYKI08] extended this model to three dimensions, and 
Combaz and Neyret introduced a semi-interactive model-
ing system for wrinkles of fabrics [CN02] and organic 
shapes such as leaves [CN06]. Their systems deform an 
elastic surface by locally expanding the user-specified 
regions and relaxing the accumulated energies. In these 
systems, the user specifies the local growth rate by textures 
or painting interfaces. However, these studies are limited to 
thin membranes and are intended only for growth (expan-
sion) of tissues. In medical science, finite element-based 
systems have been developed to simulate volumetric de-
formations of organs such as the heart [AKS*04; 
WSSH04]. These systems, however, are either for off-line 
simulations or require specific hardware.  

Detail-preserving deformations: Gradient domain 
mesh deformation method is an active research area. The 
key concept is to cast mesh deformation as an energy mi-
nimization problem. The energy function contains the 
terms for detail preservation and positional constraints. The 
detail preservation term involves both the local differen-
tials and local transformations. We refer the reader to sur-
veys of this field [Sor06; BS08]. Note that these methods 
only consider static surface geometry; it is difficult to ap-
ply them to dynamic deformations driven by internal forces.  

Deformable models: After Terzopoulos et al. [TPBF87] 
introduced a finite difference approach, many physically 
based methods and models have been developed to simu-
late deformable objects including mass-spring models, and 
finite element or volume methods. More information is 
contained in surveys of this field [GM97; NMK*05]. 

Shape-matching methods have been recently introduced 
to achieve fast and unconditionally stable deformations. 
Müller et al. [MHTG05] first applied shape matching to 
deformable models. They find the best matching rigid (or 
linear) transformation from an undeformed rest shape to 
the current deformed shape and determine the goal position 
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of each particle by the transformed rest shape. They then 
pull particles to their goal positions. Rivers and James 
[RJ07] proposed an extension of this approach called lat-
tice shape matching (LSM) to simulate more degrees of 
freedom. They construct overlapped local regions for all 
particles of a volumetric lattice. They then apply shape 
matching to each local region, and blend the results to ob-
tain the smoothed goal positions. Steinemann et al. 
[SOG08] extended LSM by applying dynamic adaptive 
sampling to represent heterogeneous stiffness, and Stumpp 
et al. [SSBT08] apply a similar approach to cloth. 

Virtual character design environment: Some plat-
forms exist in which users can create virtual characters and 
design their motions from scratch. Modulobe [EHW*08] 
provide LEGO-like interfaces. The user can construct vir-
tual creatures by connecting primitives such as rectangular 
solids or shafts. The user can also control the angles of 
joints by cyclic functions to design motions. However, 
these systems are limited to articulated models. Sodaplay 
[Bur] and Springs World 3D [Fal] allow the user to create 
elastic characters. In these systems, the user constructs a 
model by connecting springs and designs animation by 
updating the rest length of each spring using a cyclic func-
tion. Although these systems are capable of creating elastic 
character animations, the spring model is unstable for large 
deformations or strong external forces, and easily generates 
undesired oscillations. In addition, these systems require 
the user to control the motion of each spring one-by-one, 
which makes creating characters with many springs both 
tedious and difficult. 

3. ProcDef: Local-to-Global Animation Framework 

We introduce a new procedural deformation framework 
(ProcDef) for animating flexible objects. Although many 
studies on deformable models have been carried out, some 
of which are mentioned above, most of them focus on pas-
sive deformations caused by external forces. In contrast, 
this paper focuses mainly on self-activated motions. Our 
framework is useful for designing animations of actively 
moving flexible characters (e.g., jellyfish and worms) or 
organs (e.g., hearts and stomachs). 

We assume that global motion of a flexible object is dri-
ven by the accumulation of local deformations. Figure 2 
shows an overview of the ProcDef framework. Before the 
animation, we prepare a volumetric tetrahedral mesh and 
define a local region Ni around each mesh vertex xi by 
connecting immediate (1-ring) neighborhood vertices. 
Neighboring local regions overlap each other (a). In each 
animation step, we first deform each region Ni of the origi-
nal mesh based on the user-specified deformation function 
Ti(t), and then synthesize a new global shape that satisfies 
the deformed local regions as much as possible. For exam-
ple, if we horizontally expand the upper regions and con-
tract the lower regions (b), the global shape bends down-
ward (c). If we contract the upper regions and expand the 
lower regions (d), the global shape bends in the opposite 
direction (e). 

The local deformation function Ti(t) depends on vertex i 
and time t. We define Ti(t) as a linear transformation to 
simplify the problem. Note that even locally linear trans-
formations can generate globally complicated nonlinear 
deformations (Sec. 6). A naive approach is to have the user 
define the individual Ti(t) manually as described by [Bur]. 
However, designing expressive motions in this way is too 
time-consuming and difficult. In the next section, we there-
fore present an efficient scheme for defining Ti(t) with few 
global controls. 

(c) (e)

T(t0) T(t1)(b) (d)

(a)

Ni

 
Figure 2: Overview of ProcDef. We first deform individual 
local regions Ni (b)(d) of the original mesh (a) by the user-
specified T(t) and synthesize the global shape that satisfies 
the deformed local shapes (c)(e). 

4. Local Deformation Pattern Design 

This section introduces an efficient and intuitive scheme 
for designing local deformation patterns Ti(t) ∈  R3×3. We 
assume that a single static orientation field (a set of three 
orthogonal vector fields) is defined inside the model. This 
orientation field determines the orientations of the local 
deformations. We believe that this assumption is natural, 
since organic objects usually have fixed fiber orientations 
and the local deformations are aligned to the orientations 
(e.g., the heart). We provide a graph interface called de-
formation charts to control the time-varying cyclic defor-
mations. The system allows the user to optionally specify 
an amplitude field and a phase-shift field for more compli-
cated deformation patterns. We provide painting interfaces 
for constructing these fields. We also introduce a stimuli–
response framework that allows the user to design specific 
behaviors when the object contacts obstacles. 

4.1 Orientation Field Design 

In our definition, an orientation field is a set of three ortho-
gonal vector fields in which three orthogonal unit vectors 
(d1, d2, d3) are defined at each vertex. Since designing 
appropriate orthogonal vector fields over the whole model 
is generally difficult for the user, we divide the design 
process into two steps [TOII08]. 
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In the first step, the user constructs a smooth layer field 
by placing constraint points with a painting interface. The 
user selects a color that represents a layer value; blue and 
red correspond to the outermost and innermost parts re-
spectively. The user then paints the color on the model 
using three tools: a single face fill tool, a flat region fill 
tool, and a stroke tool [TOII08]. The single face fill tool 
allows the user to paint the selected color onto a triangle 
under the mouse cursor, and the system places constraint 
points with the selected layer value on three vertices of the 
triangle. The flat region fill tool allows painting on mul-
tiple triangles that construct a near-flat surface (the user 
can choose the angle threshold); the system places con-
straint points with the selected value at all vertices of the 
near-flat surface. The stroke tool allows the user to draw a 
colored stroke on the model surface and the system places 
constraint points along the stroke. During painting, the user 
can interactively cut the model by drawing a cutting stroke 
and paint on the cross sections. After each painting action, 
the system automatically interpolates the layer values asso-
ciated with the constraints over the model so that it gene-
rates a smooth layer field. We apply a radial basis function 
(RBF) for the interpolation [TO99], and we use the gra-
dients of the obtained layer field as secondary directions of 
the orientation field. 

In the second step, the user specifies the primary direc-
tions of the orientation field by drawing strokes. The user 
selects a layer (iso-surface of the layer field) and draws 
strokes on the layer. This ensures that the stroke direction 
is always perpendicular to the gradient direction of the 
layer field. After drawing each stroke, the system imme-
diately interpolates the stroke orientation over the model; 
we individually interpolate x, y, and z values of the tangent 
directions of the input strokes in three-dimensional space 
using the RBF and then normalize the interpolated x, y, and 
z values to obtain a unit vector at each vertex. Finally, the 
system estimates the third directions of the orientation field 
by taking the cross product of the primary and secondary 
directions.  

Figure 3 shows a design process of an orientation field 
for the jellyfish model. The user first paints blue (outer-
most) on the outer surface and red (innermost) on the inner 
surface of the model using the flat region fill tool (a) to 
generate the smooth layer field (b). The user can cut the 
model by drawing a cutting stroke (the red line in (b)) to 
examine the layer structure. The user next draws four 
strokes onto a layer to specify the primary direction of the 
orientation field. Two strokes are placed on the near side 
and the others are on the far side (c). The system finally 
constructs the smooth orientation field (d). The three fig-
ures in (d) show the primary, secondary, and tertiary orien-
tations from left to right. 

4.2 Deformation Charts 

After designing the smooth orientation field over the model, 
the user specifies the local expansion/contraction rate using 
three line charts that we call deformation charts (Fig. 4). 
Each of the three charts represents an expansion / contrac-

tion rate in the primary, secondary, or tertiary direction of 
the orientation field. While the horizontal axis corresponds 
to the phase [0, T], where T is the user-specified time cycle, 
the vertical axis represents the expansion/contraction rate 
[1/A, A], where A > 1 is the user-specified amplitude value. 
The left and right edges of the charts are connected to 
represent cyclic deformation behavior. The vertical red bar 
indicates the timeline and moves from left to right repeat-
edly. The user can modify the three charts by adding or 
removing control points or by dragging existing control 
points in the charts. 

We also provide a volume preservation mode, whereby 
the user can modify the chart for the primary direction, and 
the system automatically adjusts the remaining secondary 
and tertiary charts so that the local transformation always 
preserves the original volume. The system adjusts the sec-
ondary and tertiary charts to maintain c1(t) × c2(t) × c3(t) = 
1, where c1(t), c2(t), and c3(t) are the values of the primary, 
secondary, and tertiary charts at time t. We provide two 
options for the user: adjusting both charts in which we set 
c2(t) = c3(t) = )(c1 1 t/ , or adjusting the secondary chart 
only in which we set c2(t) = 1/c1(t) and c3(t) = 1. 

Calculation of local linear transformation: Given 
three directions of the orientation field (d1, d2, d3) and 
expansion/contraction rates from the deformation charts 
(c1(t), c2(t), c3(t)) for a vertex i at time t, the local linear 
transformation Ti(t) is defined as 

T
321 ) )(c ),(c ),(c diag()( DDT tttti = ,          (1) 

where D = (d1 d2 d3) ∈  R3×3 and diag(c1, c2, c3) is a 3 × 3 
diagonal matrix of which the diagonal elements are c1, c2, 
and c3.  

(a)

(b) (d)

(c)

Figure 3: User interface for designing an orientation field.

×1/A
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0 T

For primary direction

Time line Control points

0 T

For secondary direction

0 T

For tertiary direction

Tensor field

Figure 4: Deformation charts to define expansion / con-
traction rate. Top row shows an orientation field and a 
local region (cube). The three charts define the deforma-
tion rate in the primary, secondary, and tertiary directions
of the orientation field. 
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4.3 Amplitude/Phase Shift Fields 

The orientation field and the deformation charts deform the 
entire local regions in the same way and lack the ability to 
represent rich motions. To support more complicated con-
trol, we allow the user to optionally specify amplitude and 
phase-shift fields [KA08]. We provide painting interfaces 
to design both of these fields similar to that provided for 
layer field construction. 

The amplitude field allows modifying the magnitude of 
the local deformations depending on the space. One can 
bend an object by increasing the local deformation on one 
side and reducing it on the other side as shown in Figure 5. 
We define an amplitude field as being a smooth scalar field 
over the model in which all vertices have values ranging 
over [–1, 1]. To design this, the user first selects red (value 
1), black (value 0), or blue (value –1) and then paints on 
the model with the selected color using the three painting 
tools. When a vertex has an amplitude field value As, the 

system modifies a deformation chart value c as c´ = cAs. 
Thus, when As = 1, the system does not change the original 
deformation rate. When As = 0, the system eliminates the 
deformation effect by making the rate = 1. When As = –1, 
the system inverts the deformation rate. 

The phase-shift field allows the user to vary the timing 
of local deformations depending on the position. This field 
is useful for representing motion propagating through the 
body, such as a swimming motion of a jellyfish or a peris-
taltic movement of a bowel. Figure 6 shows the effect of 
this field. In our definition, a phase-shift field is a smooth 
scalar field ranging over [0, 1]. The user can design this 
field in a way similar to the amplitude field. In this field, 
black (value 0) and green (value 1) correspond to the 
source and sink of the deformation signals. In the anima-
tion process, the system shifts phases of the deformation 
charts according to the specified field as c′(t) = c(t – Ps/vp), 
where Ps is the value of the phase-shift field and vp is the 
propagation speed specified by the user. The combination 
of the phase-shift and amplitude fields is useful for gene-
rating a wavy motion (e.g., crawling snake).  

4.4 Stimuli-Response Deformation 

In some natural objects, deformation signals are triggered 
by environmental stimuli. For example, a snail deforms its 
body when something touches it, and the deformation 
usually starts at the contact point. ProcDef can easily emu-
late such stimuli–response phenomena. Here, we show an 
example of stimuli–response interaction (Fig. 7). 

(a)

(b)

(c)

(d)

(e)

 
Figure 7: Stimuli–response interactions. The deformation 
pattern is specified beforehand (a). When the user touches 
the object (c), a deformation signal arises from the touched 
point (d). We visualize excited regions in red (e). 

Before animating an object, the user sets the propagation 
speed vp and damping magnitude Dm of a deformation sig-
nal, and specifies a deformation pattern using the deforma-
tion charts (Fig. 7(a)). In the animation process, the system 
allows the user to touch the object by mouse clicking (Fig. 
7(b)). When the user touches the object, the system con-
structs a distance field from the touched point over the 
object, and then propagates the deformation signal along 
the distance field; the system dynamically constructs an 
amplitude and phase shift for local regions according to the 
distance field.  When a vertex has a normalized distance 
field value d, we define its phase-shift value as Ps = d, and 
amplitude value as As = Dm

-d; larger phase shift and smaller 

(a) (b)
(e)

(d)

(c)

Figure 5: Bending effect due to an amplitude field. A bar 
model and its orientation field are shown in (a). The user 
constructs an amplitude field (c) with the painting inter-
faces (b). The amplitude field efficiently bends the target 
model (d) and (e). The expansion rate in the primary 
orientation is ×1.5 in (d) and ×1/1.5 in (e). Deformed 
regions are highlighted in red (contraction) or light blue 
(expansion). 

(a) (b) (c)
t0 t1 t2 t3 t4

t0 t1 t2 t3 t4
Figure 6: Deformation propagation due to a phase-shift 
field. The user constructs a phase-shift field (b) with a 
painting interface (a) and sets the deformation chart for 
the primary direction (c). The bottom row shows the se-
quential poses at times t0, t1, t2, t3, and t4 in (c). Contracted
and expanded regions are highlighted in red and light
blue, respectively. 
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magnitude are applied to distant locations. A stimulus re-
sponse is not a cyclic motion, so the system sweeps the 
deformation charts only one cycle. This simple framework 
successfully emulates deformations triggered by external 
stimuli (Fig. 7(c) and (d)). 

5. Implementation Detail 

This section explains our algorithm that synthesizes global 
motions from local deformations. An object is represented 
by a volumetric tetrahedral mesh. We construct overlap-
ping local regions Ni at each vertex xi by connecting the 
immediate (1-ring) neighborhood. The deformation of each 
local region Ni at time t is defined by the user-specified 
linear transformation Ti(t).  

Our algorithm is based on LSM [RJ07]; we first apply 
shape matching to all regions and blend the results to ob-
tain smoothed goal positions gi of vertex xi, and then pull 
vertices to their goal positions. The main differences be-
tween LSM and our approach are as follows. While LSM 
used the original lattice as a rest state, we transform each 
local region Ni of the original tetra mesh by Ti and use the 
deformed shape as a rest state (Fig. 2). Another difference 
is the use of the tetrahedral mesh instead of a regular lattice. 
In the lattice representation that embeds an actual model, 
outer particles of a lattice are usually outside of the model, 
and thus many regions do not fit inside the actual model. 
Designing global motions by indirectly controlling such 
unfitted regions is difficult and unintuitive. In our approach, 
the tetrahedral mesh, in which all local regions are inside 
the actual model, allows directly and intuitively specifying 
local deformations. 

Unfortunately, a fast summation operator of fastLSM is 
not available in our case, since constructing a hierarchical 
structure for the fast summation in a tetra mesh is difficult. 
Note that the benefits of the fast summation would not be 
significant even if it were available, since we use only 
small local regions (1-ring neighborhood). 

Finding goal position by shape matching: We denote 
the mass of the ith vertex by mi. To ensure that vertices 
belonging to many regions are not weighted more than 
others, we use modified vertex masses, im~ = mi /|Ni|, for 
shape matching, where |Ni| is the number of vertices in Ni. 
For each local region Nr, [RJ07; MTHG05] find the best-
fitting rotation matrix Rr that minimizes 

( )∑
∈

−−−
rr i

riririm~
N

200 )()(argmin cxcxR
R

,          (2) 

where xi
0 and xi are vertex positions of the undeformed 

mesh and the current deformed mesh, respectively, and cr
0 

and cr are the mass centers of Nr of the undeformed and 
current mesh,  
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In our case, we use the local shape deformed by the linear 
transformation Tr(t) as the rest configuration, 
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The best-fitting rotation matrix Rr can be estimated using 
the rotation part of 

3300 ))(()( ×

∈

∈−−≡ ∑ RcxTcxA T

N
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i
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r

m~ .      (5) 

We can obtain the rotation matrix Rr via the polar decom-
position Ar = RrSr, where Sr is a symmetric matrix 

rrr AAS T= . Given Rr, cr, and cr
0, we estimate the goal 

position of the ith vertex in the local region Nr as,  

rrrirri i N∈+−= ccxTRx )( 00 .     (6) 

Finally, we obtain the goal positions by blending the 
shape- matching results of all local regions, 

∑
∈

+−=
ki

iikii
k

k || NN
))((1 00 ccxTRg .                    (7) 

To accelerate computation, we precompute Mr and cr
0 and 

apply a warm start [RJ07] when computing
rr AAT . 

Iterative approach for stiffness control: The original 
LSM modifies the size of local regions to control the stiff-
ness. However, this stiffness control is not applicable to 
our method for the following reason. We assume that a 
local region is uniformly deformed by a single linear trans-
formation. Thus, a large local region would contain large 
errors and induce inappropriate global deformations. De-
forming large local regions nonuniformly may be possible, 
for example, with multiple linear transformations. Howev-
er, this requires the same local-to-global deformation as-
sembly to calculate the nonuniform deformation of a large 
region, which is too costly. We therefore control the stiff-
ness by repeatedly applying shape matching to small local 
regions. 

When calculating the goal position, we first apply shape 
matching to the current animated shape xi, to obtain the 
goal position g0

i. Next, we use the obtained g0
i as the target 

shape and apply the shape matching to g0
i to obtain g1

i. We 
can iteratively calculate the gN

i and use them as the goal 
shape. N is a user-defined parameter. For a larger value of 
N, a force applied on a vertex affects vertices farther away, 
resulting in stiffer deformations (Fig. 8). Note that the 
computational cost is proportional to N. 

Dynamics: When the goal positions are obtained, we up-
date the vertex positions xi and velocities vi as described by 
[MHTG05], 

(c) N = 15(b) N = 6(a) N = 1

Figure 8: Stiffness control by iteration. We fix the center of 
a worm in the air. Each figure shows the rest global shape 
with different iteration size N. 
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where h is the time step of the simulation and fi

ext is the 
external force applied to the i-th vertex. We also apply the 
damping model introduced by [MHHR06; RJ07]. 

6. Results and Discussion 

ProcDef supports general deformations that are induced by 
muscular tissues and it covers a large variety of possible 
motions. Figures 1 and 9 show swimming jellyfish and 
crawling worms designed with ProcDef. The user can easi-
ly design these animations by setting the orientation field 
and the three deformation charts. Our phase-shift field 
supports the design of deformation propagation effects 
(Figs. 1(c) and 9(a)). We set the amplitude field to create a 
bending motion of the worm in Figure 9(c) and 9(e). Figure 
10 shows scenes containing many moving objects. In these 
examples, the system computes both the deformations and 
collision avoidances between objects in real time. Note that 
these characters have not been frequently used in video 
games so far, because it was difficult and costly to design 
and compute their motions. We hope our method can make 
such currently unpopular characters to be heavily used in 
the future. 

Our system is also useful for animating organs. We pre-
pared a heart ventricle model and defined its orientation 
field as described by [TAI*08]. The primary directions of 
the orientation field are aligned in a spiral form and the 
secondary directions are oriented in the thickness direc-
tions of the ventricular wall (Fig. 11(a)). We then specify 
the deformation charts to make the local regions contract 
along the primary directions and expand in the secondary 
directions (Fig. 11(b)). These parameters generate highly 
realistic twisting motions of the heart (Fig. 11(c)). We also 
designed animations of a bowel. We defined a ring-shaped 
orientation field (Fig. 11(d)) and deformation charts (Fig. 
11(e)). We then propagate deformation signals to generate 
peristaltic motions (Fig. 11(f)). Figure 11(g) highlights the 
deformation signals; red and light blue indicate contrac-
tions and expansions, respectively, in the primary orienta-
tion. Since these organ animations are computed in real 
time on a standard PC and the user can interact with the 
model, we believe ProcDef will be a useful tool for medi-
cal applications such as surgery simulations or electronic 
charts. 

Finally, Table 1 summarizes the performance of our cur-
rent implementation for each scene in this paper. All tim-
ings are generated on a 2.4-GHz Intel Core 2 Duo CPU. 

7. Conclusions 

In this paper, we presented ProcDef, a new rig-less anima-
tion design framework for flexible objects. The key con-
cept is to design the global motions by controlling local 

deformations. ProcDef permits designing animations of 
flexible organic objects that have been difficult to be dealt 
with by skeleton- or keyframing-based approaches. Proc-
Def also allows interactively adding external forces and 
stimuli during animation. We provided an efficient scheme 
for designing local deformation patterns by setting charts 
and volumetric fields. We applied the shape-matching me-
thod to synthesizing motions induced by local deforma-
tions robustly and efficiently. 

One limitation of our method is the representation of 
stiffness. Although we introduced an iterative method for 
stiffness control, its computational cost is linearly propor-
tional to the iteration size N. Development of a more so-
phisticated stiffness model remains an item for future work. 
Another item for future research is inverse animation de-
sign. Currently, we control local deformations, and a glob-
al motion only emerges afterward. Allowing a designer to 
set a global motion and to have the local deformation con-
figurations computed automatically would be appealing 
and useful. We would also like to combine ProcDef with 
skeleton- or keyframing-based frameworks for designing 
more complicated animations.  

(e)(d)

(a) (c) Viewed from top

(b)

Figure 9: Crawling worms. We construct an orientation 
and phase shift field on a worm model (a) and set deforma-
tion charts (b) to create a crawling motion (d). We can also 
design bending motions(e) by setting an amplitude field (c).

Figure 10: Multiple moving objects: 31 swimming jelly-
fishes (left) and 101 short worms (right). 

model Figure #Vertices   
(#Regions)

#Models Iteration N Time(msec)

Jellyfish Fig. 1 854 1 2 4.37 
Worm Fig. 8 470 1 6 5.04 

Jellyfishes Fig. 10left 315 31 1 31.64
Worms Fig. 10right 73 101 1 34.01
Heart Fig. 11 a-c 1302 1 6 14.79
Bowel Fig. 11 d-g 1576 1 6 17.49

Table 1: Performance of ProcDef. The time row shows the 
timings (millisecond) for computing local deformations Ti, 
global motions, and collision avoidance, but for rendering.
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Figure 11: Animations of a heart and an S-shaped bowel. LV and RV indicate the left and right ventricles of the heart. We 
show the representative poses of the heart motion in the top row of (c). The bottom row of (c) is an overhead view of the 
sliced heart model. When beating, the left ventricle (LV) wall strongly thickens to reduce the size of the left ventricle (c). 


